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1 Introduction

The NP-hard problem of decoding random linear codes lies at the very heart of many
constructions in code-based cryptography. Using information set decoding algorithms is
the currently most promising way to solve instances of this problem. The e�ectiveness
of these algorithms de�nes the security level at which many cryptosystems operate. Un-
fortunately many scientists only prove the asymptotic superiority of their information set
decoding algorithm over previously developed algorithms, but do not provide exact formu-
las respecting polynomial factors to estimate the runtime complexity of their algorithms
for concrete parameters in practice. Therefore it is hard for designers of code-based cryp-
tosystems to choose durable parameters. Some scientists tried to improve this situation by
developing generic lower bounds on the complexity of information set decoding; however
such bounds tend to be beaten as soon as new ideas come up (e.g. the bound found in [26]
was beaten in [19]).
In contrast our approach is to provide formulas that respect polynomial and � as far as
possible � even constant factors for the currently most important information set decoding
algorithms and hence help designers choose parameters, which are at least secure against
these algorithms, at more ease. Concretely we present the following six information set
decoding algorithms for binary �nite �elds in this thesis: Prange's algorithm [27], Lee-
Brickell's algorithm [28], Stern's algorithm [22], Ball-Collision Decoding [19], FS-ISD [26]
and BJMM [21]. We use a common model for all of them and apply various optimization
techniques previously only seen in the context of Stern's algorithm to each of them to
�nd precise formulas for their runtime and memory complexities. The formulas are imple-
mented in the form of a C++ program for ease of use.
A particular focus is laid on the most recent BJMM algorithm: We investigate its so far
unknown practical potential in comparison to the other algorithms, insofar that we exem-
plary compute the attack complexities for several relevant parameter sets of the McEliece
cryptosystem [3] for all of them. Moreover we propose a conceptual change of the original
version of the BJMM algorithm published in [21] that further improves the runtime of the
algorithm by a polynomial factor. Our optimizations and improvements turn out to make
the BJMM algorithm practically very relevant; in fact it seems to be the currently most
e�cient information set decoding algorithm not only asymptotically, but even in practice.

1.1 Overview

Section 2 explains the notation employed within this work and introduces important def-
initions and theorems required to understand the basics of code-based cryptography and
in particular information set decoding. It also contains a short description of the McEliece
cryptosystem [3] as a motivating example, which underlines the importance of information
set decoding.

Section 3 �rst introduces a structure that all information set decoding algorithms share
and discusses each of the aforementioned six algorithms separately and in detail afterwards:
We provide a pseudocode description of each algorithm and explain the resulting runtime
and memory complexities. Possible optimization techniques conclude each section.

In section 4 we display the results obtained from our C++ implementation of the runtime
and memory complexity formulas developed in section 3 for four concrete McEliece param-
eter sets and di�erent combinations of algorithmic optimizations. The section also features
various tables meant as shorthand references to look up the aforementioned formulas.
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After a short conclusion in section 5 follow several appendices with more detailed informa-
tion for the interested reader. Most notably, appendix E contains the runtime and memory
complexity formulas for the BJMM algorithm from [21], generalized to an arbitrary num-
ber of layers.

Literature references can be found at the end of this thesis.

1.2 Related Work

Bernstein, Lange and Peters describe most of the optimization techniques used within this
thesis in the context of Stern's algorithm in [14] and propose some McEliece parameter
sets for di�erent security levels, that we put to the test in section 4.

Finiasz and Sendrier tried to provide lower bounds for the complexity of information set
decoding in [26]. As proven in [19] these bounds do not always hold though. Nevertheless
the paper [26] contains a description of the FS-ISD algorithm as well as other valuable
ideas such as the application of the birthday paradox to information set decoding.

The paper [19] introduces the Ball-Collision Decoding algorithm and is one of the few that
mention exact formulas for the computational complexity of the algorithm in question
apart from the asymptotic behaviour. Bernstein et al. even discuss possible optimizations
for their algorithm and propose another lower bound for the complexity of information set
decoding.

In [21] May et al. describe the BJMM algorithm � an information set decoding algorithm
in a divide-and-conquer structure, which incorporates the idea of using representations of
vectorial sums. They prove its asymptotic superiority over the other algorithms discussed
in this work and give an useful overview of worst-case complexities for many algorithms.
The question of the practical break-even point of the BJMM algorithm in comparison to
other information set decoding algorithms was left open in [21], but is addressed in this
thesis.

Some information set decoding algorithms have been generalized to work over Fq instead of
just over binary �nite �elds. In particular C. Peters made an implementation quite similar
to ours available in combination with her paper [23]. Unfortunately this implementation
only covers Stern's algorithm, whereas our implementation covers all of the six algorithms
mentioned in this work (over F2 though). The program implemented in combination with
this thesis additionally enables the user to automatically �nd the optimal parameter sets
in a brute-force approach.

The more classical information set decoding algorithms were introduced in [27], [28] and
[22].
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2 Preliminaries

2.1 Notation

In this work we use Fq to denote a �nite �eld/Galois �eld of order q. Usually we �x q = 2,
i.e. we work with binary �elds.
By ~v ∈ Fnq we mean a column vector with n elements (v1, . . . , vn)T , vi ∈ Fq ∀ i. Thereby
AT means the transpose matrix of a matrix A.
In general matrices are denoted by uppercase Latin letters and the notation Fn×mq means

the set of all matrices (n rows, m columns) with entries from the �nite �eld Fq, e.g. Fn×m2

is the set of all n×m binary matrices. Special cases are 0[n×m] and id[n], which denote the
n×m all-zero matrix and the n× n identity matrix, respectively.
For a matrix A ∈ Fn×mq with column vectors ~a1, . . . ,~am ∈ Fnq we employ the notation

A = (A1 | A2), A1 ∈ Fn×(m−s)
q , A2 ∈ Fn×sq to show that the concatenation of the

column vectors of the matrices A1 and A2 form the matrix A. It is useful to recall
that for any two compatible matrices A = (A1 | A2) and B = (B1 | B2) with splits
A1, A2, B1, B2 of appropriate sizes (Ai and Bi must have the same number of columns) we
have ABT = A1B

T
1 +A2B

T
2 .

Moreover, given a matrix A ∈ Fn×mq , AI means the matrix, which consists of the column
vectors of A, that are indexed by a set I ⊆ {1, . . . , n}. Similarly we de�ne the vector
consisting of the I-indexed entries of the column vector ~v ∈ Fnq as ~vI and ~v[r] ∈ Frq means
the vector ~v ∈ Fnq restricted to its �rst r entries (I = {1, . . . , r}). For ~v1 ∈ Fnq , ~v2 ∈ Fmq the

function ~v3 ← prepend(~v1, ~v2) creates a vector ~v3 ∈ Fn+m
2 , which contains the entries of ~v1

at the top and those of ~v2 below. In contrast the function ~v2 ← remove(~v3, n) returns a
vector ~v2 that contains the entries of ~v3 apart from its �rst n ∈ N entries.
We use wt (~v) to denote the hamming weight of a vector ~v ∈ Fnq , which is de�ned as the
number of nonzero elements of ~v. The hamming distance between two vectors ~v1, ~v2 ∈ Fnq
is de�ned as dist (~v1, ~v2) := wt (~v1 − ~v2), i.e. the number of coordinates where the two
vectors di�er.
The notation s ∈r S means that we choose an element s uniformly at random from a set S
and Pr[e] indicates the probability of the occurrence of an event e.
By time {do()[o1, o2, . . .]} we mean the average runtime of an algorithm or function do() us-
ing the optimizations o1, o2, . . ., whereas mem {do()[o1, o2, . . .]} denotes the average mem-
ory consumption of that algorithm or function with the same optimizations applied. These
measures are meant to be statistically indistinguishable from average values of su�ciently
many runtime and memory consumption experiments with the algorithm/function do()
and uniformly chosen input parameters. mem {D} may also be used to denote the mem-
ory consumption imposed by a data structure D.
We might also employ the soft-O notation, an extension of the Landau notation. f(n) =
Õ(g(n)) means f(n) = O(g(n) logk(g(n))) for some k ∈ R+; so basically we ignore log-
arithmic factors of f(n) (which can be arbitrary polynomials, if f(n) is an exponential
function). Note that Õ(2n) ≤ 2(1+ε)n for some ε > 0 and su�ciently large n.

2.2 Elementary De�nitions and Theorems

This section introduces basic concepts used in code-based cryptography and contains many
of the mathematical de�nitions and theorems employed within this work. Readers familiar
with those concepts can easily skip this section.
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2.2.1 Linear Codes

In 1948 Claude Elwood Shannon published "A Mathematical Theory of Communica-
tion" [1], which describes the transmission of messages over noisy channels and is one
of the foundations of information theory. The basic idea is to add redundant information
to a message, so that a receiver can recover the message even if a limited number of er-
rors occurs during transmission. Obviously both sender and receiver must use the same
prede�ned method to transform and recover messages - a so-called code. The process of
applying redundant information to messages is called encoding, the process of removing
that redundant information (and possibly correcting errors) is called decoding. The term
codeword is used to describe an encoded message.
Over the years many codes were developed that featured di�erent e�ciency or error-
correcting capabilities. Codes with a common structure can be grouped into families.
The probably most simple family is the family of linear codes:

De�nition 2.2.1 (Linear Code). Denote by ~m ∈ Fkq a message and by G ∈ Fk×nq a matrix

of rank k. Then the set C := {~c ∈ Fnq | ~cT = ~mTG, ~m ∈ Fkq} is called a linear code of
length n and dimension k. G is called a generator matrix.

Remark 2.2.1. The de�nition is slightly di�erent from the standard de�nition, which
de�nes a linear code C as a set of row vectors. Since we declared all vectors to be column
vectors in section 2.1 though, we adapted the de�nition. Actually with our de�nition we
have C := {~c ∈ Fnq | ~cT = ~mTG, ~m ∈ Fkq} = {GT ~m | ~m ∈ Fkq}.

Remark 2.2.2. Regarding the rows of the generator matrix G of a linear code C, note
that a codeword ~c is just a linear combination of the rows of G; the rows of G form a basis
of a k-dimensional subspace of the vector space Fnq (since G has full rank).

Remark 2.2.3. If q = 2, we speak of binary linear codes, otherwise of q-ary linear codes.
In the context of linear codes you will also often see the de�nition of the notion code rate
or information rate as R := k

n . The error rate is usually de�ned as W := w
n , if the linear

code allows for at most w errors to be corrected.

We call such codes linear, because for any codewords ~c1,~c2 ∈ C we have: ~c1 + ~c2 ∈ C.
This directly follows from the linearity of matrix multiplication and gives us an ine�cient
method to check whether a given code C̃ is indeed linear.
The minimum distance d := min {dist (~c1, ~c2) | ~c1,~c2 ∈ C,~c1 6= ~c2} between any two code-
words ~c1,~c2 of such a code C leads to the usual notion of a [n,k,d]-code (although the
minimum distance is sometimes left out). A generator matrix G of a linear code encodes
messages of length k into codewords of length n. Obviously the receiver can correct at
most bd−1

2 c errors in a unique way. There exist algorithms that try to correct more than

bd−1
2 c errors in a codeword ~c, but these just output lists of codewords close to ~c (so-called

list-decoding algorithms). If that list contains more than one element, it remains a task for
the receiver to decide which codeword was probably sent. In this work however we focus
on linear codes with error-correcting capability w ≤ bd−1

2 c.
Decoding a linear code is usually done in the following way: The receiver of an encoded
message may assume that some errors ~e ∈ Fnq might have occurred during transmission of
the codeword ~c and thus expects to possess something in the form ~y = ~c+~e. Additionally he
must assume that the number of possible errors is limited to wt (~e) ≤ w ≤ bd−1

2 c. Knowing
the generator matrix G of the linear code C as well as a decoding algorithm decodeG(),
which takes ~y as input, he uses decodeG() to remove the errors ~e from the codeword ~c and
retrieve ~m afterwards. Formally we de�ne:

4



De�nition 2.2.2 (decodeG()). Given an [n, k, d] code C with generator matrix G, a code-
word ~c = GT ~m and a vector ~y = ~c + ~e with wt (~e) ≤ w ≤ bd−1

2 c, the algorithm decodeG()
takes ~y as input and outputs the message ~m in polynomial time (in n). It is parameterised
by the generator matrix G.

Usually such algorithms work for certain classes of linear codes and not just for one speci�c
generator matrix G. However they heavily depend on the generator matrix that was used
during the encoding process. An algorithm decodeG() that works for any linear code in
polynomial time (in n) is not known so far. In fact the general problem was proven to be
NP-hard [4].
Nevertheless it is interesting to analyse, which linear codes have common properties that
might be useful for decoding. As the main problem of an algorithm decodeG() lies in
correcting the errors in at most w positions (after having corrected the errors, retrieving
~m from ~c is trivial) and the capability to correct errors usually depends on the distance
dist (~c1, ~c2) between any two codewords ~c1,~c2 ∈ C only, it makes sense to de�ne the notion
of equivalent codes as follows:

De�nition 2.2.3 (Equivalent Codes). Two linear [n, k] codes C1, C2 are equivalent, if and
only if there exists a bijective mapping function f : Fnq → Fnq , s.th. ∀ ~c1,1,~c1,2 ∈ C1 there
exist mappings f(~c1,1), f(~c1,2) ∈ C2 with dist (~c1,1,~c1,2) = dist (f(~c1,1), f(~c1,2)).

Equivalent codes have several interesting properties:

Lemma 2.2.1. Given a linear code C1 with a generator matrix G1 ∈ Fk×nq and an equiv-
alent linear code C2 with a generator matrix G2 the following statements hold:

1. C1 is a linear [n,k,d]-code ⇔ C2 is a linear [n,k,d]-code

2. G2 can be generated from G1 using the following matrix operations:

(a) elementary row operations (permutation of rows, adding a non-zero multiple of
one row to another, multiplication of a row by a non-zero scalar)

(b) permutation of columns

(c) multiplication of a column by a non-zero scalar

More formally, we can write G2 = AG1M with A ∈ Fk×kq , rank(A) = k and M ∈
Fn×nq being a monomial matrix.

Proof.

1. C1 and C2 are linear [n, k]-codes by de�nition. The minimum distance d is also
the same, because C1 and C2 share the same set of distances between codewords in
general.

2. Given a linear code C1 with generator matrix G1, the basic question is: Which
operations on the set of codewords C1 do not change the distances between any
two codewords within C1, i.e. which operations can be used to create an equivalent
code C2?
First observe that we cannot change a single codeword ~c′ ∈ C1 without changing all
codewords, because we must retain the linearity of the resulting code. Hence we can
only apply operations to all codewords at the same time. There are only 3 linear
operations on all codewords of a linear code, that do not change the distance between
any two of the codewords:

5



(a) Change the mapping ~m→ GT ~m of the message space to the code space, but do
not change the code: This is equivalent to applying elementary row operations
on G1: Denote by G

′
1 the generator matrix G1 with arbitrary elementary row

operations applied, i.e. G′1 = A · G1, rank(A) = k. As already mentioned, the
rows of G1 form a basis of a subspace F kq in the vector space Fnq . It is well known
that elementary row operations do not change the solution set of a system of
linear equations. Therefore the rows of G′1 span the same subspace Fkq in Fnq as
the rows of G1 and we have C1 = C ′1. It directly follows that we can de�ne the
mapping function f as the identity function. Obviously the distances between
the codewords of C1 and C ′1 are the same as the codes are identical (C1 = C ′1).

(b) Permute the positions of the entries of all codewords: In that case we would
de�ne f as the permutation function π : Fnq → Fnq . Since wt (~c) = wt (π(~c)) for
any ~c ∈ C1, the distances between any two codewords do not change after the
permutation. Permuting the positions of the entries of all codewords obviously
corresponds to a permutation of the columns of G1.

(c) Multiply entries of all codewords in a �xed position by a non-zero scalar r ∈
Fq: Without loss of generality let us choose to multiply all codewords of C1

by r ∈ Fq, r 6= 0 in the position 1 ≤ i ≤ n. If we once again de�ne f as
the identity function, the only di�erence regarding the distance between any
two codewords in C1 and any two codewords in C ′1 can come from the entries
indexed by i. Denote these scalar entries by c1, c2 ∈ Fq (the i-indexed entries
of any two di�erent codewords of C1) and c

′
1 = r · c1, c

′
2 = r · c2 (the i-indexed

entries of the two corresponding codewords of C ′1) respectively. We immediately
get c′1− c′2 = r · (c1− c2) and see that the non-zero scalar r cannot make c′1− c′2
zero, if c1 − c2 is not zero. Thus the hamming distance between the codewords
of C1 and those of C ′1 is the same (cf. section 2.1).

The latter two operations (b) and c)) can be described as a right-hand multiplica-
tion of the generator matrix G1 by a so-called monomial matrix M ∈ Fn×nq (cf. re-
mark 2.2.4). Using all possible linear operations a), b) and c) to create a generator
matrix of another linear code C2 we get G2 = AG1M with rank(A) = k.
The only remaining possible operation "add a non-zero multiple of one column of G1

to another column" does not preserve the distance between the codewords of C1.

Remark 2.2.4. A monomial matrix is a generalized form of a permutation matrix: A
permutation matrix P ∈ Fn×nq is a matrix that can be created from the identity matrix id[n]

by permutation of the columns. A monomial matrix M ∈ Fn×nq can be created from a
permutation matrix P by additionally multiplying the columns of P by scalars α1, . . . , αn ∈
Fq, αi 6= 0 ∀ i.

Equivalent codes C1 and C2 with the same set of codewords, i.e. C1 = C2, are also called
identical codes. In that case the generator matrix of the code C1 can be transformed into
the generator matrix of the code C2 by only using elementary row operations. However
note that the mapping ~m → GT ~m of the message space to the code space is usually not
the same for equivalent codes C1 and C2, even if we have C1 = C2 (i.e. identical codes).
Instead, the notion of equivalence is based on the distance between the codewords of such
codes, which is independent of the mapping of the message space to the code space.
The properties of equivalent codes from lemma 2.2.1 imply the following:
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Theorem 2.2.1. Every linear [n, k, d] code C with generator matrix G ∈ Fk×nq has an

equivalent (and even an identical) code C ′ with a generator matrix G′ = (id[k] | R), R ∈
Fk×(n−k)
q .

Generator matrices in such a form are called systematic generator matrices.

Proof. Using the properties from lemma 2.2.1 we can apply Gaussian elimination to G to
generate G′. As a byproduct we can also compute the matrix A, rank(A) = k and the
monomial matrix M . Note that Gaussian elimination does not necessarily require column
operations, i.e. we can even make C and C ′ identical (C = C ′,M = id[n]).

Using generator matrices in systematic form for encoding can be useful as it allows the
sender to just append n − k symbols to the message ~m. For decoding, the receiver can
directly read the message from the k �rst symbols - after having corrected possible errors
using the redundant n− k symbols of course.
As we will see, the notion of equivalent and/or identical codes is also useful in other
scenarios.
However let us �rst have a look at parity check matrices: Instead of using a generator
matrix G, a parity-check matrix H is often employed to de�ne a linear code:

De�nition 2.2.4 (Parity Check Matrix). Let G ∈ Fk×nq be a generator matrix of a code C.

Any matrix H ∈ F(n−k)×n
q with HGT = 0[(n−k)×k] and rank(H) = n− k is a parity check

matrix of the code C.

Remark 2.2.5. The rows of H form a basis of Ker(G). For example the Gaussian algo-
rithm can be used to compute H from G in time polynomial in the size of G.

Remark 2.2.6. For any linear code C with generator matrix G ∈ F k×nq of the form

G = (id[k] | R), R ∈ Fk×(n−k)
q (i.e. systematic form) we have that H = (−RT | id[n−k])

is a valid parity check matrix of C, because HGT = −RT · id[k] + id[n−k] ·RT = 0[(n−k)×k].
In combination with theorem 2.2.1 this allows us to compute the parity check matrix H for
any generator matrix G of a linear code C since the parity check matrix of any identical
code is also a parity check matrix of the original code C. A similar statement holds for
equivalent codes (see the proof of lemma 2.2.2 for details).

Accordingly, we say that parity check matrices of the form H = (Q | id[n−k]), Q ∈ F(n−k)×k
q

are in systematic form.

The name "parity check matrix" probably comes from the fact, that one can easily check
whether a received message ~y ∈ Fnq is an error-free codeword or not: If ~y is a valid
codeword ~c of a code C with generator matrix G and parity check matrix H we have
H~c = H(~mTG)T = HGT ~m = ~0. The alternative de�nition of a linear code C for a par-

ity check matrix H ∈ F(n−k)×n
q directly follows as C := {~c ∈ Fnq | H~c = ~0}. Similar to

theorem 2.2.1 one can see that using a di�erent parity check matrix H ′ = B · H with

B ∈ F(n−k)×(n−k)
q , rank(B) = n− k results in a code identical to C.

The resulting vector ~s = H~y is more generally de�ned as the syndrome of a vector ~y ∈ Fnq :

De�nition 2.2.5 (Syndrome). Denote by H ∈ F(n−k)×n
q a parity check matrix of a code C

and ~y ∈ Fnq a vector. Then we call ~s = H~y the syndrome ~s ∈ Fn−kq of ~y.

Note that for any codeword with some added error vector ~e, i.e. ~y = ~c+ ~e, we have

~s = H~y = H(~c+ ~e) = H~e (2.1)

7



by linearity. This is often used to correct errors: Given a lookup table T , that maps all
possible syndromes ~s = H~e to errors ~e with wt (~e) ≤ bd−1

2 c (note that H cannot be in-
verted), we can compute the original codeword from ~y = ~c+~e as ~c = ~y−T (~s). This process
is called syndrome decoding.
In particular ~s = 0 implies ~y ∈ C, i.e. a codeword without errors. From an information
theoretical point of view the receiver got hold of dlog2(q)e(n− k) redundant bits of infor-
mation in that case, justi�ed by the possibility of occurring errors. If an appropriate code
was used, the receiver should even be able to discard n− k entries of the error-free ~y and
still recover the message ~m. More formally we de�ne:

De�nition 2.2.6 (Information Set (Generator Matrix)). Given a linear [n, k] code C with
a generator matrix G ∈ Fk×nq , a size-k index set I ⊆ {1, . . . , n} is an information set, if
and only if rank(GI) = |I| = k.

IfGI is a k×k submatrix ofG with full rank, its column vectors span a k-dimensional vector
space and can thus be used to represent any possible non-redundant linear transformation
on a message ~m ∈ Fkq . In particular we know:

Theorem 2.2.2. Given a vector ~y = ~c + ~e and an information set I with ~eI = ~0 we can
retrieve the message ~m ∈ Fkq corresponding to the codeword ~c ∈ C as ~mT = ~yTI G

−1
I .

Proof. First note that GI ∈ Fk×kq is a square matrix with full rank and is thus invertible.

For any codeword ~cT = ~mTG we have: ~yTI G
−1
I = (~c+ ~e)TI G

−1
I = ~cTI G

−1
I = (~mTG)IG

−1
I =

~mTGIG
−1
I = ~mT .

~cTI = (~mTG)I = ~mTGI follows from the observation that the j'th column of ~cT is only
computed from linear combinations of the entries of the j'th column vector of G.

Remark 2.2.7. It is also interesting to see what we get for the case ~eI 6= ~0: ~yTI G
−1
I G =

(~mTGI + ~eTI ) · G−1
I G = ~mTG + ~eTI G

−1
I G = ~cT + ~cTx with ~cTx := (~eTI G

−1
I ) · G ∈ C as

Ĝ := G−1
I G generates a code which is identical to the code generated by G according to

lemma 2.2.1.
Hence correcting errors in linear codes and retrieving the original message could be described
as the problem of �nding an information set, which does not contain any errors (or for
which we know ~eI).

So the I-indexed entries of an error-free codeword ~c are su�cient to de�ne the message
~m. Therefore these entries are called information symbols, whereas the remaining n − k
redundant entries are called parity check symbols.
As we will mostly work with parity check matrices of linear codes, it is useful to have an
alternative de�nition of information sets, if parity check matrices are used.

De�nition 2.2.7 (Information Set (Parity Check Matrix)). Given a linear [n, k] code C

with a parity check matrix H ∈ F(n−k)×n
q any size-k index set I ⊆ {1, . . . , n} is an infor-

mation set, if and only if rank(HI∗) = |I∗| = n− k with I∗ := {1, . . . , n} \ I.

Lemma 2.2.2. The two de�nitions 2.2.6 and 2.2.7 are equivalent.

Proof.

1. Starting with the generator matrix G ∈ Fk×nq of a linear code C and the index set I,
�rst permute the k indexed columns to the left side of G (i.e. apply a corresponding
monomial matrixM to the right side of G). Then we can use row operations to bring

the permuted G in the systematic form G′ = AGM = (id[k]|Q), Q ∈ Fk×(n−k)
q ; the

code generated byG′ is equivalent to the linear code generated byG (cf. theorem 2.2.1
and lemma 2.2.1).
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2. Now we can create a parity check matrix H ′ from G′ according to remark 2.2.6 as
H ′ = (−QT | id[n−k]). H ′ is a parity check matrix for the code generated by G′.

3. Then H := H ′MT is a parity check matrix for the code generated by G, because
H ′G′T = 0[(n−k)×k] ⇔ H ′(AGM)T = 0[(n−k)×k] ⇔ H ′MTGTAT = 0[(n−k)×k] ⇔
H ′MTGT = 0[(n−k)×k] ⇔ HGT = 0[(n−k)×k]. Note that A and M are invertible
matrices.

Obviously the identity matrix id[n−k] in the second step represents the non-indexed columns
(I∗ = {1, . . . , n} \ I) and rank(id[n−k]) = n− k.

Roughly speaking, we can either choose k linearly independent columns of a generator
matrix G to form an information set or choose n − k linearly independent columns in H
to (indirectly) do the same. If such an information set does not contain any errors, we can
recover the message ~m using theorem 2.2.2.
If you are interested in a more thorough introduction into coding theory and linear codes,
have a look at [2, 29].

2.2.2 McEliece Cryptosystem

The McEliece Cryptosystem is a public-key cryptosystem based on linear codes, which
was originally published in [3]. Although encryption and decryption are extremely fast
and one of its underlying problems was proven to be NP-hard (i.e. at least as hard as any
NP-complete problem) [4], it is not widely used, because its keys are relatively large and
the code rate is relatively low (increasing the code rate does not seem to be wise as [5]
indicates). Moreover it has always been a problem to estimate the complexity of attacks
on concrete McEliece parameter sets and thus choose secure parameters in practice. These
problems however, as well as the fact that the McEliece cryptosystem seems to withstand
known quantum attacks [6] at the cost of even larger key sizes [7], led to an increased
research interest until today.
Let us review the McEliece Cryptosystem:

Algorithm 2.1: McEliece Key Generation

Input: n, k, q ∈ Z
Output: the public key pk and the secret key sk
Choose a linear [n, k, d] code C over the �nite �eld Fq uniformly at random from a1

class of linear codes, so that a decoding-algorithm decodeG() exists, that can correct
up to w ≤ bd−1

2 c errors in polynomial time (cf. de�nition 2.2.2) for a structured
generator matrix G.
Find a structured generator matrix G ∈ Fk×nq of the linear code C.2

Choose P ∈r Fn×nq , P is a permutation matrix.3

Choose A ∈r Fk×kq , rank(A) = k.4

G′ := AGP5

pk := (G′, n, k, w, q)6

sk := (G,P,A)7

return (pk, sk)8

The basic idea is to hide the linear code C generated by the matrix G within an equivalent
code C ′ generated by the matrix G′. We know from the previous section that C and C ′

are both linear [n, k, d] codes (cf. lemma 2.2.1). Even though the codewords of C and C ′

are similar (cf. de�nition 2.2.3), the mapping ~m → GT ~m from the message space to the
codewords is entirely di�erent for the codes C and C ′.
Encryption is essentially the same as encoding a message ~m into the code C ′ and then
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adding some random "transmission" error ~e with wt (~e) = w:

Algorithm 2.2: McEliece Encryption

Input: a message ~m ∈ Fkq and the public key pk
Output: the corresponding ciphertext ~y ∈ Fnq
~cT := ~mTG′1

Choose ~e ∈r Fnq ,wt (~e) = w.2

~y := ~c+ ~e3

return ~y4

For the security of the cryptosystem it is a good idea to set w = bd−1
2 c (if possible), i.e. to

add an error vector with maximum weight during encryption.
Decryption is slightly more complicated:

Algorithm 2.3: McEliece Decryption

Input: a ciphertext ~y and the secret key sk
Output: the corresponding message ~m
~dT := ~yTP T = ~mTAG+ ~eTP T // or ~d := P~y1

~aT := decodeG(~d) = ~mTA2

~mT := ~aTA−1
3

return ~m4

Note that P is a permutation matrix and thus P−1 = P T and wt (~e) = wt
(
(~eTP T )T

)
=

wt (P~e), i.e. multiplying ~yT by P T does not pose a problem for the decoding algorithm
decodeG(). It is also important to see that the columns and rows of A ∈ Fk×kq form a basis

of Fk×kq as A has full rank. So ~mTA cannot be distinguished from a normal message.
There are two possible types of attacks on the McEliece cryptosystem:

Structural Attacks: It must be hard to recover G (and thus A and P ) from G′ using
the public key pk and ~y. Also note that in practice the linear code C and thus G
has a certain structure, so that one can de�ne an e�cient algorithm decodeG() for
that linear code and any other generator matrix with that structure. An attacker
could additionally use the structure of the code C to recover G: Given random input
parameters to create the code C, it must be hard to distinguish the matrix G from a
random matrix G̃ ∈r Fk×nq . For example the attack presented in [5] is based on that
fact and only works for certain codes.

Decoding Attacks: It must be hard to recover ~m from ~y using the public key. Essentially
this problem can be formulated as: Given a linear code C ′ generated by a random
generator matrix G′ ∈r Fk×nq and an erroneous codeword ~y = ~c+ ~e,wt (~e) = w,~cT =

~mTG′, �nd the message ~m. This problem of decoding a random linear code was
proven to be NP-hard in [4]. Note that even though C and C ′ are equivalent, we
cannot use decodeG() in combination with G′ and ~y as it is highly unlikely that G′

has the same structure as G to make decodeG() work.

The security of the McEliece cryptosystem heavily depends on the structure of the linear
code C as well as on the parameters n, k, w, q. In the original paper [3] McEliece proposed
to use binary (i.e. q = 2) [1024,524] Goppa codes with error-correcting capability w =
50. Goppa codes are described in [8, 2]. An algorithm for e�cient decoding of binary
Goppa codes is described in [10]. However this set of parameters was found to be insecure
by several researchers, for instance theoretically by Canteaut and Sendrier in [11] and
practically by Bernstein et al. in [14]. Many other more secure parameter sets have been
proposed.
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Remark 2.2.8. For binary Goppa codes the relation k = n− t · log2(n) is known to hold,
if n = 2m for some m ∈ N. The parameter t occurs in the context of Goppa codes. We
only need to know that if Patterson's decoder as described in [10] is used, we have t = w,
so that we obtain the number of errors as a function of the parameters n and k:

w =
n− k

log2(n)

This is particularly interesting for asymptotic observations as the error rate W := w
n be-

comes W = 1−R
log2(n) = Θ

(
1

log2(n)

)
in combination with Goppa codes, if R = Θ(1).

So one should remember that at least for the McEliece cryptosystem the often seen assump-
tion "W = Θ(1) and R = Θ(1)" does not hold.

It is worth mentioning that the original McEliece cryptosystem as it is presented here is
not IND-CPA-secure: If we encrypt ~0, we will always get a ciphertext ~y with wt (~y) = w,
whereas for almost all of the other plaintexts we have wt (~y) 6= w. So we can simply
choose the zero-vector and some other message as challenge plaintexts and can then dis-
tinguish the ciphertexts with high probability. More generally, we can distinguish any
two ciphertexts ~y1 and ~y2 with probability 1, where wt (~c1) − wt (~c2) is larger than 2w
(note that this is not the distance between the codewords). An attacker does not know
the weight of the codewords ~c1 and ~c2, but he knows that this event often occurs if he
chooses the all-zero vector and some other vector as messages. Actually he can even check
whether wt (~y1) − wt (~y2) > 4w holds for any two ciphertexts ~y1 and ~y2 to ensure that
wt (~c1)− wt (~c2) > 2w holds for the corresponding codewords ~c1 and ~c2.
However there exist several suggestions to even achieve IND-CCA2-security for the McEliece
cryptosystem. The interested reader is referred to [16, 17].
A relatively recent proposal was made by Bernstein, Lange and Peters in [18] to use wild
Goppa codes instead of classical Goppa codes for the McEliece cryptosystem. Wild Goppa
codes are a generalization of classical Goppa codes, which allow to correct a factor of
roughly q

q−1 more errors than classical Goppa codes (q > 2). Since the increased error-
correcting capability seems to allow for smaller key sizes at the same level of security, this
proposal is quite interesting. This generalized form of the McEliece cryptosystem (q = 2
is identical to the original binary McEliece cryptosystem) is called Wild McEliece.

2.2.3 Information Set Decoding

Information set decoding tries to solve the following NP-hard problem: Given a random-
looking generator matrix G′ ∈ Fk×nq of a linear code C ′ and a vector ~yT = ~mTG′ + ~eT , ~e ∈
Fnq ,wt (~e) = w, recover ~m. Alternatively, we could recover ~e and then solve the linear equa-

tion system ~yT − ~eT = ~mTG′ or use the method provided by theorem 2.2.2 to retrieve ~m.
Roughly speaking, the problem is that of decoding a random linear code.
Information set decoding can be used to attack the McEliece cryptosystem presented in the
previous section. So far it even seems to be the top threat against the McEliece cryptosys-
tem (as well as against Wild McEliece). Therefore the security of a certain set of McEliece
parameters against information set decoding is often used to estimate the overall security
of these McEliece parameters. Several (exponential-time) information set decoding algo-

rithms are discussed in section 3. Most of them use the parity check matrix H ′ ∈ F(n−k)×n
q ,

that can be computed from G′ using Gaussian elimination (cf. de�nition 2.2.4).
Then we can formulate the problem di�erently: Given a random-looking parity check ma-
trix H ′, a vector ~y = ~c + ~e and a syndrome ~s = H ′~y = H ′~e, �nd the error vector ~e ∈ Fnq
with wt (~e) = w (cf. equation (2.1)). This problem - identical to the problem of decoding a
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random linear code - is also called the Computational Syndrome Decoding (CSD) problem.
The basic idea of any information set decoding algorithm is to uniformly choose an infor-
mation set I (cf. de�nition 2.2.7), guess the I-indexed part ~eI of the error vector according
to a prede�ned method1 in a brute-force approach and try to compute the whole error vec-
tor ~e from these assumptions. If the guess was correct, one would obtain an error vector ~e
with wt (~e) = w.

Remark 2.2.9. Note that only the original error vector ~e satis�es wt (~e) = w as long as
w ≤ bd−1

2 c holds.

Proof. Let us assume that we �nd another error vector ~en 6= ~e with H ′~en = ~s and wt (~en) ≤
bd−1

2 c. Then we have H ′~en = ~s = H ′~y = H ′~c + H ′~e ⇒ H ′~c = H ′(~en − ~e) ⇒ ~en − ~e ∈
C ′. However the codeword ~en − ~e has the weight wt (~en − ~e) ≤ bd−1

2 c + bd−1
2 c ≤ d −

1 and thus a distance of less than the minimum distance d to the all-zero codeword.
⇒ Contradiction.

For example we could use the observation from remark 2.2.7: Guessing an error ~eI (or
many di�erent ~eI according to a prede�ned method), we can compute ~cTx = (~eTI G

′−1
I ) ·G′.

Then we can compute ~cT = ~yTI G
′−1
I G′ − ~cTx and ~e = ~y − ~c. If such an error vector satis�es

the equation wt (~e)
?
= w, we immediately found the original error vector ~e. If we did not

�nd the original error vector, we can still choose a di�erent ~eI or another information set I
and try again.
Let us describe information set decoding with parity check matrices: First note that choos-
ing an information set in the context of parity check matrices means choosing n−k linearly
independent columns of H ′ ∈ F(n−k)×n

q (cf. de�nition 2.2.7). For the sake of clarity after
choosing an information set I, we apply the following steps to H ′:

1. We use a permutation matrix P ∈ Fn×nq to permute the columns of H ′ indexed by the
set I∗ := {1, . . . , n}\I to the right side of H ′, i.e. we create H ′p := H ′P . Observe that

the parity check matrix H ′p corresponds to the generator matrix Ĝ := G′P−1 = G′P T

as H ′p · ĜT = H ′P · (G′P−1)T = H ′G′T = 0[(n−k)×k] (cf. de�nition 2.2.4). One should

keep in mind that Ĝ generates a linear code, which is equivalent, but not identical
to the code generated by G (cf. lemma 2.2.1).

2. We apply elementary row operations to H ′p to bring it into the systematic form

Ĥ := (Q | id[n−k]), Q ∈ F(n−k)×k
q . As Ĥ generates the same code as H ′p, it is still a

valid parity check matrix for the code generated by Ĝ (also see remark 2.2.6). We
introduce the matrix R to represent the elementary row operations on H ′p.

More formally we de�ne algorithm 2.4 to do exactly those operations mentioned above
and additionally de�ne a new syndrome ~ς := R~s and a new (unknown) error vector
~ε := P−1~e = P T~e. If you carefully look at the operation P T~e, you will notice that a
left-handed multiplication by a permutation matrix means a permutation of the rows of
the (column) vector ~e. As P comes from step 1 above, we know that it only changes the po-
sitions of the I-indexed rows of a matrix or (in this case) a vector. Observe that P~e would
mean a permutation of the I-indexed rows with the rows at the very bottom of ~e; however
here we have the inverse permutation P−1 = P T , i.e. a permutation of the I-indexed rows
of ~e with the top rows of ~e. Putting it all together we can see that the I-indexed entries
from the error vector ~e are all shifted to the top of ~ε by P T . One could write ~εI := ~ε[|I|].

1The concrete method depends on the speci�c algorithm. Details can be found in section 3.
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Algorithm 2.4: GenerateSystematicParityCheckMatrix

Input: parity check matrix H ′ ∈ F(n−k)×n
q , ~y = ~c+ ~e, information set I

Output: parity check matrix Ĥ in systematic form, permutation matrix P ,
syndrome ~ς

~s := H ′~y (syndrome of the original problem)1

apply the column operations mentioned in step 1 above to H ′ to obtain H ′p = H ′P ,2

save the permutation matrix P
apply the elementary row operations mentioned in step 2 above to H ′p to obtain3

Ĥ = (Q | id[n−k]) in systematic form, save the matrix R
~ς := R~s4

return (Ĥ, P, ~ς)5

Remark 2.2.10. The permutation of the columns of H ′ and thus the matrix P is not
really necessary for the idea presented here to solve the CSD problem. It would su�ce to
bring the I-indexed entries of H ′ into the form of an identity matrix using elementary row
operations only. Nevertheless we use P to bring H ′ into completely systematic form to
make important observations more obvious.

Remark 2.2.11. In the context of information set decoding the information set I is usually
chosen uniformly at random, so that in practice you will not see algorithm 2.4 as described
above, but in a more optimised version: Instead of taking the random information set I as
input, one just randomly permutes the columns of H ′ and chooses the k leftmost columns
as the information set I (as long as the set I∗ = {1, . . . , n} \ I indexes n − k linearly
independent columns to satisfy the de�nition of an information set). The rest is done as
in algorithm 2.4.
Algorithm 3.1 takes this remark into account.

We have Ĥ~ε = RH ′P · P T~e = RH ′P · P−1~e = RH ′~e = ~ς = R~s ⇔ H ′~e = ~s, i.e. the
formulation of the computational syndrome decoding problem with a matrix in systematic
form is the same (just with Ĥ instead of H ′, ~ς instead of ~s and ~ε instead of ~e). Thus, if we
are able to solve the problem for a parity check matrix in systematic form, we obtain an
error vector ~ε and can then solve the problem in the original form by computing ~e = P~ε.
Now to possibly solve the computational syndrome decoding problem with the parity check
matrix Ĥ using information set decoding, we once again guess the I-indexed entries of the
error vector ~ε, i.e. ~εI - presumably many times and according to a prede�ned method. From
our previous observations we know that the equation Ĥ~ε = ~ς has a structure as depicted in

�gure 2.1. Note that Ĥ ∈ F(n−k)×n
q , Q ∈ F(n−k)×k

q , i := id[n−k],~ε ∈ Fnq ,~εI ∈ Fkq ,~εI∗ ∈ Fn−kq

and ~ς ∈ Fn−kq . ~εI∗ is used to denote the entries of ~ε, that are not indexed by I. We aim to
compute those entries.

( )
Q i




~εI

~εI∗

= ~ς

Figure 2.1: Structure of Ĥ~ε = ~ς with i := id[n−k]

This gives us the idea that it might be useful to split ~ε even more, so that we get an
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equation as in �gure 2.2:

( )
Q i






~εI

~0

+




~0

~εI∗


= ~ς

Figure 2.2: Transformed structure of Ĥ~ε = ~ς

Let us de�ne ~εI,0 ∈ Fnq to be the vector ~εI with n− k zeros padded at the bottom and ~εI∗,0
the vector ~εI∗ with k zeros padded at the top (as in �gure 2.2). Then we get

Ĥ~ε = ( Q | i ) · (~εI,0 + ~εI∗,0) = ~ς

⇔ Q~εI + ~εI∗ = ~ς (2.2)

⇒ ~εI∗ = ~ς −Q~εI (2.3)

and we can extract ~εI∗ from equation (2.3). To check whether our guess regarding ~εI was

correct, we could now test if wt (~εI∗)
?
= w−wt (~εI) holds. If it does not, we can just choose

a di�erent information set I or guess a di�erent ~εI and try again. If it does, we compute
~ε = ~εI,0 + ~εI∗,0 and obtain the unique error vector ~e = P~ε with wt (~e) = w.

2.2.4 Comparing Information Set Decoding Algorithms

Comparing information set decoding algorithms is by no means trivial: Although all of the
algorithms presented in section 3 have runtimes that can easily be modeled by equations
containing several binomial coe�cients, most of these equations cannot be used to directly
compare the algorithms for improvements over one another. In practice one would probably
just compute the results of these equations for a concrete parameter set (n, k, w) and choose
the algorithm with the best runtime. This is the approach presented in section 4. In theory
though it is desirable to know which algorithm is superior to another by what degree and
for which range of parameters.
An usual approach to do so is to rewrite the aforementioned equations containing the
binomial coe�cients in a way that reveals their exponential nature, i.e. by writing them
as 2(α(R,W )+o(1))n = Õ(2α(R,W )n). Thereby it is common to write the exponent as a
function α(R,W ) of the code rateR := k

n and the error rateW := w
n . Note that a statement

such as Õ(2α(R,W )n) regarding the runtime of an information set decoding algorithm hides
any possible polynomial p(n, k, w) as p(n, k, w)2α(R,W )n = Õ(2α(R,W )n), which makes such
a statement only useful for asymptotic observations (n→∞).
For asymptotic observations it is even possible to relate the code rate and the error rate
of random binary linear codes via the Gilbert-Varshamov bound (an introduction can be
found in [29], chapter 2) and thus remove the parameter w or W from the equations. By
maximising the resulting statement of the form Õ(2α(R)n) with regard to R (0 ≤ k ≤ n)
whilst choosing the optimal algorithmic parameters, one can even obtain a worst case
complexity of the form Õ(2an) for some constant 0 < a < 1. For example this is done by
May et al. in [20] and [21]. We call these bounds that allow for a straightforward asymptotic
comparison of information set decoding algorithms rough bounds. A nice overview of the

14



rough bounds of the most important information set decoding algorithms is presented
in [20, 21].

Remark 2.2.12. May et al. often use the handy formula
(
an
bn

)
= Õ(2aH2(b/a)n), where

H2(x) := −x log2(x) − (1 − x) log2(1 − x) is the binary entropy function. The formula
follows from Stirling's formula (cf. de�nition 2.2.9); it can even be used to quickly obtain
conservative parameter choices for any information set decoding algorithm.
In [21] they additionally use the fact that Õ(2an) < 2(a+ε)n for some ε > 0 and su�ciently
large n (i.e. they round up at some decimal) to get rid of the Landau notation. We will
also provide the rough bounds that way.

The overall advantages and disadvantages of this bound are displayed in �gure 2.3.

Advantages

+ allows for a straightforward compari-
son of the asymptotic runtimes

+ short

Disadvantages

- polynomial di�erences remain invisible

- no usable statement for practical ap-
plications, i.e. for �xed parameters
(n, k, w)

Figure 2.3: Advantages and disadvantages of the rough bound

As the rough bound is an asymptotic bound that ignores polynomial factors we can only use
it for a statement such as: "For su�ciently large n, algorithm X performs better than algo-
rithm Y." However algorithm Y might perform better for smaller n as algorithm X might
have polynomials in its runtime description that are much larger than those of algorithm Y.
These observations are important in practice. Therefore it is desirable to provide explicit
runtime descriptions of information set decoding algorithms of the form p(n, k, w)2α(R,W )n

for a polynomial p(n, k, w). Note that the o(1) in the exponent is missing this time.
It is common in literature (e.g. see [15]) to even �x α(R,W ) to the exponent that occurs in
the runtime description of the oldest information set decoding algorithm, namely Prange's
algorithm (cf. section 3.2), which exposes the exponential term 2α(R,W )n with the following
function α(R,W ) for n→∞ (i.e. time {Prange} = Õ(2α(R,W )n)):

De�nition 2.2.8.

α(R,W ) := (1−R−W ) log2(1−R−W )− (1−R) log2(1−R)− (1−W ) log2(1−W )

Remark 2.2.13. To verify this claim, we can start with time {Prange} = Õ
((

n
w

)(
n−k
w

)−1
)

=

Õ
((

n
Wn

)((1−R)n
Wn

)−1
)
(inverse of equation (3.9)) and use the formula from remark 2.2.12

to obtain time {Prange} = Õ(2α(R,W )n) with α(R,W ) as de�ned above.

Then we can try to rewrite the runtime of any algorithm ALG as time {ALG} = q(n, k, w)·
2α(R,W )n, where q(n, k, w) is a possibly (inverse) exponential function. Thereby it is useful
to write q(n, k, w) = q′(n, k, w)·err(n, k, w), where limn→∞ err(n, k, w) = 1 for asymptotic
observations (i.e. time {ALG} = Θ(q′(n, k, w)2α(R,W )n)). Unfortunately we usually cannot
compute err(n, k, w) exactly due to the problem of writing the binomial coe�cients and
factorials as exponential functions. Nevertheless it is normally possible to provide tight
bounds on err(n, k, w) by using the re�ned Stirling approximation below.

De�nition 2.2.9 (Stirling Formula).

m! =
√

2π ·mm+1/2 · e−m+ε(m)

where ε : {1, 2, 3, . . .} → R is a function to make the equation hold.
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The classic Stirling approximation is ε(m) ≈ 0, but we require the re�ned approximation:

Lemma 2.2.3 (Re�ned Stirling Approximation).

1

12m+ 1
< ε(m) <

1

12m

Proof. A proof can be found in [30].

Hence we cannot only use q(n, k, w) for asymptotic observations as with the rough bound,
but also for comparisons that hold for any n (with the upper and lower bound on err(n, k, w)
providing a certain error range for these comparisons). Figure 2.4 sums up the advantages
and disadvantages of this method, that results in an equation which we de�ne as the explicit
bound of the runtime of an information set decoding algorithm. Several explicit bounds
for di�erent algorithms are provided in [15, 25]; however sometimes only for the success
probability of an algorithm.

Advantages

+ polynomial di�erences are visible

+ more usable for practical applications
and concrete parameter sets

+ asymptotic runtime is still visible

Disadvantages

- equations are long and complicated

Figure 2.4: Advantages and disadvantages of the explicit bound

Now to compare an algorithm ALG1 with an algorithm ALG2 we de�ne the advantage of
ALG1 over ALG2 as:

De�nition 2.2.10 (Advantage of an algorithm over another).

Adv(ALG1[o1,1, o1,2, . . .] > ALG2[o2,1, o2,2, . . .]) :=
time {ALG1[o1,1, o1,2, . . .]}
time {ALG2[o2,1, o2,2, . . .]}

Thereby o1,1, o1,2, . . . are the optimizations applied to algorithm ALG1 and o2,1, o2,2, . . . are
those applied to algorithm ALG2.

For time {ALGi} = qi(n, k, w)2α(R,W )n, qi(n, k, w) = q′i(n, k, w) · erri(n, k, w) and

limn→∞ erri(n, k, w) = 1 ∀ i we can then use Adv(ALG1 > ALG2) = Θ
(
q′1
q′2

)
. This

way we can even see polynomial di�erences between two algorithms for a �xed α(R,W )
(cf. de�nition 2.2.8).
All in all it must be admitted though that none of these methods are very useful in prac-
tice. In practice it is desirable to have exact implementations of the runtime and memory
complexity formulas for the existent information set decoding algorithms. Such an im-
plementation for the algorithms discussed in this thesis is provided as part of this work
(cf. section 4).
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3 Algorithms

Information set decoding algorithms aim to solve the computational syndrome decod-

ing problem: Given a random-looking parity check matrix H ∈ F(n−k)×n
q of a linear

[n, k, d] code C, a vector ~y = ~c + ~e and a syndrome ~s = H~y = H~e, �nd the error vec-
tor ~e ∈ Fnq with wt (~e) = w.
This section �rst presents several classical algorithms to cope with the problem, followed
by some more recent algorithms. All of these algorithms are analysed for their average
number of iterations, the number of binary operations per iteration and their memory
consumption. We also provide both rough and sometimes even explicit bounds for their
runtime (cf. section 2.2.4) and consider possible optimizations of the algorithms. The ulti-
mate goal is to provide formulas for each algorithm that enable us to estimate the runtime
complexities for concrete parameter sets (n, k, w) (including polynomial factors) and thus
help to pick an algorithm for a speci�c practical application. In contrast most scientists
only analyse the asymptotic runtime (n → ∞) - which does not really help in practical
applications where n is �xed.
Note that we use q = 2 from now on, i.e. we limit our observations to binary �nite �elds.
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3.1 General Structure

All of the information set decoding algorithms presented in this section are Las Vegas
algorithms and therefore share a common structure. This structure was already indicated
in section 2.2.3. Algorithm 3.1 presents it in more detail:

Algorithm 3.1: isd(H,~y, w); General structure of information set decoding algo-
rithms

Input: parity check matrix H ∈ F(n−k)×n
2 , ~y = ~c+ ~e, w = wt (~e)

Output: error vector ~e
~s := H~y1

while true do2

(Ĥ, P, ~ς) ← randomize(H,~s)3

// optional optimization: H := Ĥ, P := Plast · P
(success,~ε)← searchALG(Ĥ, ~ς, w) // de�ned by the speci�c algorithm ALG4

if success = true // wt (~ε) = w5

then6

~e := P~ε7

return ~e8

end9

end10

function randomize(H,~s)11

begin12

permute the columns of H uniformly at random to obtain13

Hp = HP := (K | T ), T ∈ F(n−k)×(n−k)
2 , save the permutation matrix P ∈ Fn×n2

if rank(T ) 6= n− k then goto line 13 // check for an information set14

apply elementary row operations to Hp to obtain Ĥ = RHp = (Q | id[n−k]) in15

systematic form, save the matrix R ∈ F(n−k)×(n−k)
2 (or directly apply the same

operations to ~s to obtain ~ς)
~ς := R~s16

return (Ĥ, P, ~ς)17

end18

The function randomize() is basically a slight variation of algorithm 2.4 incorporating
remark 2.2.11, i.e. we simply choose the k leftmost columns of Ĥ as information set I,
which is checked to be valid in line 14. Obviously one would not use the explicit check
of line 14 in practice, but rather check the rank of T during the Gaussian elimination
performed in line 15 anyway. The separation of these two lines in algorithm 3.1 is only
done for illustrative purposes and can be ignored for the runtime analysis.
The function searchALG() is di�erent for each information set decoding algorithm ALG
and tries to �nd an error vector ~ε, so that wt (~ε) = w holds. If it is able to �nd such a
vector, it sets the variable success to true and returns the error vector ~ε. Otherwise it sets
success to false.
As with any Las Vegas algorithm the basic idea is to randomize the original input and
hope that the randomized input of searchALG() features exactly those properties that
make the function searchALG() work. The "good properties" of Ĥ and ~ς are de�ned by
the implementation of searchALG() and thus by the algorithm used.
To estimate the runtime and memory consumption of algorithm 3.1, we introduce the
following model:
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• Given two binary vectors ~v1, ~v2 ∈ Fn2 addition of these vectors can be achieved in time
O(n). Note that this assumption only makes sense for q = 2, where an addition of
binary vectors of length n can be represented as n XOR-operations. These operations
can easily be parallelized in hardware.
If a computational architecture works on words of size b, a more proper complexity
would be O(nb ).

• Storing a binary vector ~v ∈ Fn2 consumes O(n) units of memory space (usually exactly
n bits). Storing a matrix M ∈ Fl×n2 accordingly results in a memory consumption
of O(ln).

• Memory access times (read, write) are neglected. Neglecting this measurement is
common in literature to obtain a relatively simple model that only requires a min-
imal set of assumptions with regard to the underlying computational architecture.
Memory access times can be quite relevant in practice though.

The inverse success probability of the algorithm ALG, namely PrALG[success = true]−1

can be used to estimate the average number of iterations of algorithm 3.1. Note that in
reality PrALG[success = true] heavily depends on the implementation of searchALG() and
the concrete error vector ~e, which we do not know. Therefore PrALG[success = true] is
replaced by a probability over averages of ~e, namely PRALG[success = true]. As [25] points
out, PRALG[success = true]−1 is not necessarily identical to the real average number of
iterations for a concrete error vector2. Nevertheless it is a reasonable measure often seen
in literature (e.g. [22, 25]). Then we have:

time {isd()} = PRALG[success]−1(time {randomize()}+ time {searchALG()}) (3.1)

mem {isd()} = O(n2) +mem {randomize()}+mem {searchALG()}

Regarding the function randomize() one can easily see that its runtime is dominated by
the binary Gaussian elimination in line 15 of algorithm 3.1. Therefore it makes sense to

recall how this Gaussian elimination on H ∈ F(n−k)×n
2 works: We iterate over the columns

indexed by I∗ = {k + 1, . . . , n}. Then we choose a pivot for the speci�c column (which
might involve some row swapping) and iterate over all of the n − k rows of H, excluding
the pivoted row. For each "1"-entry in the current column vector we add the pivoted row,
so that the column vector only contains exactly one "1"-entry in the end (at the diagonal
of id[(n−k)]). So during the �rst column iteration we work on ≤ n−k rows and the addition
of the pivoted row to the current row requires n− 1 binary additions (the �rst column can
be left out as we know that it becomes zero). During the second iteration, we once again
iterate over all of the n−k rows, but the addition of the pivoted row to the current row only
requires n−2 additions (mod 2) as both the �rst and the second column are known to have
a single "1"-entry only (at the diagonal of id[(n−k)]); and so on through the last column
iteration, which involves ≤ k binary additions/operations per row (for this column). So
each row of H involves at most br :=

∑n−k
i=1 n − i = n(n − k) − 1

2(n − k)(n − k + 1)
binary operations (with i iterating over the columns). All in all we get (n − k) · br =
(n − k) · [(n − k)2 + (k − 1

2)(n − k) − 1
2(n − k)2] = 1

2(n − k)3 + (k − 1
2)(n − k)2 = O(n3)

bit operations.

Remark 3.1.1. One might also observe that a row addition only occurs with probability
1
2 , which is ignored here.

2An example for Lee-Brickell's algorithm can be found on page 85 of [25].
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Due to the fact that randomize() stores at least the matrix P ∈ Fn×n2 , we may use
mem {randomize()} = O(n2). If we do not store the matrix R in line 15, we could
even use mem {randomize()} = O(n log(n)), because we only need to save the positions
of the 1's in each column of P . By applying optimization 3.1.1 we can pretty much ignore
the repetitions implied by line 14 of algorithm 3.1 and thus get:

time {isd()} = PRALG[success = true]−1 ·
(
O(n3) + time {searchALG()}

)
mem {isd()} = O(n2) +mem {searchALG()} (3.2)

In theory one would probably use the rough estimate time {randomize()} = O(n3),
whereas in practice the more concrete estimate time {randomize()[o3.1.1]} = 1

2(n− k)3 +
(k − 1

2)(n− k)2 for the number of bit operations during the Gaussian elimination process
is often relevant. This number can even be reduced by using more of the optimizations
below.

Optimizations

As almost all of the optimization techniques presented in this work, most of the following
optimizations come from [14, 25]. They are meant to speed up the Gaussian elimination
process in the randomize() function of algorithm 3.1.

Optimization 3.1.1 (Adaptive information sets). As already mentioned, in practice we
compute line 14 and line 15 of algorithm 3.1 at the same time by applying Gaussian elim-
ination. Returning to line 13, if we cannot produce an identity matrix id[n−k] from the
n− k rightmost columns of Hp, seems ine�cient though: Instead, we could just adapt our
choice of the n− k columns and swap those columns that seem to introduce the linear de-
pendence between the n − k selected columns (at the right) with some of the k deselected
columns (at the left). The permutation matrix P needs to be updated accordingly. Then we
could continue with the Gaussian elimination and bene�t from almost all of the work done
before. Although these operations might result in a matrix P , that is not entirely uniform
and might thus a�ect the success probability of searchALG(), no noticeable e�ects have been
observed in practice so far [25].
If we do not want to employ this optimization for algorithm 3.1, we can estimate the proba-

bility that a random binary matrix T ∈ F(n−k)×(n−k)
2 only contains linearly independent row

vectors in line 14 as follows: If we choose the �rst row vector of T uniformly at random, it
can only be linearly dependent of the zero-vector, i.e. we have a probability of 1

2n−k
to obtain

a linearly dependent vector for the �rst row. For the second row the probability is 2
2n−k

, for

the third row it is 22

n−k as there are 22 linear combinations of the previous two rows and

so on. All in all we have a probability of
∏n−k
i=1 (1 − 2i−1

2n−k
) =

∏n−k
i=1 (1 − 2−i) to obtain a

matrix T of full rank in the end. It holds that 1
4 < limn→∞

∏n−k
i=1 (1 − 2−i) < 1

4 + 1
25

+ 1
27

according to the pentagonal number theorem, so that the number of iterations due to line 14
of algorithm 3.1 is asymptotically constant and thus negligible.

Optimization 3.1.2 (Reusing existing pivots). By including the comment between the
lines 3 and 4 of algorithm 3.1 we can reduce the number of bit operations required by the
Gaussian elimination: As the matrix Ĥ from the previous iteration already contains an
identity matrix id[n−k], we can assume that the permutation of H in line 13 will result in

a matrix of the form Hp = (K | T ),K ∈ F(n−k)×k
2 , T ∈ F(n−k)×(n−k)

2 , where T contains

at about (n−k)2

n columns from id[n−k], because the probability of a single column to be part

of the previous identity matrix of Ĥ is n−k
n . These columns from id[n−k] just contain a

single "1"-entry, which is simply (row) swapped to the appropriate position by the Gaussian
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algorithm. No more work is done for these columns. The real work is left over for the

remaining n− k − (n−k)2

n = k(n−k)
n columns of H.

When using this optimization we can basically ignore s := (n−k)2

n columns of H. So for the
�rst column that we cannot ignore we get at most n−s−1 binary additions/operations per
row, for the second column n− s− 2 and so on. All in all we get at most

∑n−k
i=s+1(n− i) =∑n−k

i=1 (n− i)−
∑s

i=1(n− i) = br−
∑s

i=1(n− i) binary operations per row. Recall that br is
the number of binary operations per row without applying this optimization.

∑s
i=1(n − i)

represents the number of binary operations that we save by this optimization per row. We
have

s∑
i=1

(n− i) = sn− 1

2
s(s+ 1)

= s(n− 1

2
)− 1

2
s2

=
(n− k)2(n− 1

2)

n
− (n− k)4

2n2

=
(n− k)2(2n2 − n)− (n− k)4

2n2

=
(n− k)2[2n2 − n− (n− k)2]

2n2
=: bopt−3.1.2

=
(n− k)2[n2 + 2nk − n− k2]

2n2

Altogether we need (n−k)3[n2+2nk−n−k2]
2n2 binary operations less than the original algorithm 3.1

needs for the Gaussian elimination (1
2(n− k)3 + (k− 1

2)(n− k)2 bit operations). Note that
we once again ignored remark 3.1.1.

Optimization 3.1.3 (Force more existing pivots). The basic idea of this optimization
technique is not only to reuse those pivots that come from the identity matrix in Ĥ = (Q |
id[n−k]) as described above, but to even drop the uniform permutation of the columns of H

(line 13 of algorithm 3.1) and only arti�cially select x-many columns from Q ∈ F(n−k)×k
2

and n−k−x columns from id[n−k] in random order for the Gaussian elimination in line 15.
For any x < k(n−k)

n the Gaussian elimination step takes less time in comparison to the pre-
vious optimization technique. Actually we can calculate the number of binary operations
that we save for one Gaussian elimination in comparison to the original Gaussian elimi-
nation similarly to the calculations for optimization 3.1.2: We can ignore s′ := n− k − x
columns of H during the Gaussian elimination process. For the �rst of the columns that
we cannot ignore we need n− s′ − 1 bit operations per row, for the second n− s′ − 2 and
so on. All in all we need

∑n−k
i=s′+1 n − i bit operations per row. Observe the following for

s := (n−k)2

n as de�ned in the text of optimization 3.1.2:

n−k∑
i=s′+1

n− i =

n−k∑
i=s+1

(n− i)︸ ︷︷ ︸
#binary operations per row
with optimization 3.1.2

−
s′∑

i=s+1

(n− i) (s′ > s)

=

n−k∑
i=s+1

(n− i)−

[
s′∑
i=1

(n− i)︸ ︷︷ ︸
bopt−3.1.3

−
s∑
i=1

(n− i)︸ ︷︷ ︸
bopt−3.1.2

]
(3.3)
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bopt−3.1.3 :=
s′∑
i=1

(n− i)

= s′(n− 1

2
)− 1

2
(s′)2 (s′ := n− k − x)

bopt−3.1.3 is the number of bit operations per row that we save in comparison to the orig-
inal Gaussian elimination process. Using the formulas above we can also easily compare
this optimization with optimization 3.1.2 with regard to the number of binary operations
required for one Gaussian elimination process. The overall comparison is far more compli-
cated though:
Arti�cially swapping x-many columns instead of uniformly selecting n−k columns from Ĥ
is identical to changing only x entries in the corresponding information set I. As we know
from section 2.2.3 this implies that only x entries of the I-indexed entries of the real error
vector ~ε change, i.e. ~εI and thus ~ε (cf. equation (2.3)) cannot be assumed to be uniform any-
more during each iteration of algorithm 3.1. So we cannot use PRALG[success = true]−1

anymore to model the average number of iterations. The average number of iterations will
actually increase in comparison to the original algorithm. The di�culty lies in optimizing
the parameter x, so that the fewer work for the Gaussian elimination step outperforms the
more work from the additional iterations. As the work per iteration heavily depends on the
concrete implementation of searchALG(), this optimization can only be done per algorithm.
Nevertheless it is possible to do a general analysis of this optimization technique, which uses
statistical properties of the implementation of searchALG() as parameters. This is done
in appendix B. To use this general analysis in practical applications, one would have to
determine those parameters and write a program to do a lot of matrix computations to �nd
the optimal x for a concrete parameter set (n, k, w). This is for example done in [24] and
as part of this thesis as well.
The idea of this optimization was originally introduced by Canteaut et al. in [12, 11]
for x = 1, but generalized for arbitrary x by Bernstein, Lange and Peters in [14] (for
Stern's algorithm only though). Note that x = 1 is often not optimal and can result in a
worse overall number of binary operations for algorithm 3.1.
Applying this optimization can even have negative e�ects only, if the runtime of the Gaus-
sian elimination process is negligible in comparison to the runtime of searchAlg(), which
often happens to be the case in practice (cf. section 4).

Optimization 3.1.4 (Faster pivoting). The next optimization technique is an applica-
tion of the Four-Russians speedup [9] to the Gaussian elimination process and a typical
time-memory trade-o�: We introduce a new parameter r ≥ 2 and split the parity check

matrix H ∈ F(n−k)×n
2 into column blocks of size r (the last block may be smaller). Then

we do the following:

1. We iterate over the blocks using the iteration index l = 1, . . . , dn−kr e and apply our

standard Gaussian elimination process to the current block Bl ∈ F(n−k)×r
2 only. After

the Gaussian elimination during iteration step l we obtain a matrix of the form 0[((l−1)r)×r]

id[r]

0[(n−k−(l+1)r)×r]

 ∈ F(n−k)×r
2 . We save whatever row additions we applied per row

symbolically in a bit array a[i][j] = true/false, where i is the index of the row that
we changed (1 ≤ i ≤ n−k) and j indicates the row that we added (⇔ a[i][j] = true).
Since we only use the r rows indexed by J = {(l− 1)r+ 1, . . . , lr} for row additions,
we have 1 ≤ j ≤ r. In comparison to the original algorithm we get an additional
memory consumption of mem {a[i][j]} = O(r(n− k)). If none of the aforementioned
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optimizations were applied, this step would imply at most (n − k)
∑r

i=1(r − i) =
1
2(n− k)(r2 − r) bit operations.

2. We compute all of the possible 2r − 1 sums of the r rows indexed by J (row swapping
must be considered) for their remaining length n − lr. Saving those sums requires
another O(2r(n − r)) of memory (more precisely: O(2r(n − lr)) during iteration l)
and means a computational complexity of roughly 2(2r − 1)(n − lr) ≈ 2r+1(n − lr)
binary operations, if each sum is computed from two summands only (we can �rst
compute all sums of 2 rows, then all sums of 3 rows by using the sums of 2 rows and
so on). Alternatively we could also compute the sums "on demand", i.e. whenever we
need them in the next step, but were not computed before. This is even more e�cient
and should always be done, if other optimization techniques such as optimization 3.1.2
or 3.1.3 are applied as we do not need to do a lot (or even nothing at all) for many
blocks with these optimizations. Without these optimizations however, one would
expect every possible sum to occur anyway (for su�ciently small r).

3. Now we can use the array a[i][j] in combination with the 2r − 1 precomputed sums
to compute the matrix H as it would look like after applying the original Gaussian
elimination to the �rst lr columns of H (apart from the columns of X). The advantage
lies in the fact that we avoid multiple computations of the same subset sum. For
example in the original row addition step of the Gaussian elimination process, every
row above the pivoted row may be assumed to have a chance of 1

2 to be added to
another row (as long as H looks random). So any two rows above the pivoted row are
added to another row with probability 1

4 . This implies that we may expect to compute
the same sum of these two rows every 4 rows of H. Therefore it is worth saving the
intermediate sums.
In this step n− k binary vectors of length n− lr are added, i.e. we need (n− k)(n−
lr) binary operations.

It is probably easier to understand this method together with �gure 3.1: During the �rst
iteration, we apply the standard Gaussian elimination process to both R and T in step 1.
It makes sense to also include T , because we need r linearly independent row vectors to be
able to create the identity matrix id[r] within R and the all-zero matrix within T . During
the Gaussian elimination we save whatever operations we applied to the original rows of R
and T . This does not cost us any additional computational power, we just require some
more memory. As second step we compute all of the possible 2r − 1 sums of the rows of S
(over the length of S and the upper part of X). In step 3 we add these sums to the rows
of S and U (over the length n − r, excluding T , but including X) according to the row
operations that we saved during the Gaussian elimination process. This way no sum is
computed twice neither for S nor for U . Afterwards we proceed to the second iteration.
Figure 3.2 additionally shows the parity check matrix H after three such iterations, i.e. dur-
ing the fourth.
The analysis of the runtime advantage of this optimization is non-trivial, especially if we
compute the intermediate sums "on demand", possibly using previously computed interme-
diate sums. It also heavily depends on the parity check matrix H, which cannot be assumed
to have uniformly distributed entries anymore, if the optimizations 3.1.2 or 3.1.3 are used.
In particular only r ≤ x makes sense, if optimization 3.1.3 is applied, because we would
want to use "Faster pivoting" only on those x columns that really require row additions.
Nevertheless let us simply assume that none of the aforementioned optimizations were ap-
plied (except for optimization 3.1.1) and that we do not compute intermediate sums "on
demand". Then we can roughly estimate the overall number of binary operations of the
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R S

X T U

Figure 3.1: Parity Check Matrix H before the �rst iteration with X ∈ F(n−k)×k
2 , R ∈

Fr×r2 , T ∈ F(n−k−r)×r
2 , S ∈ Fr×(n−k−r)

2 , U ∈ F(n−k−r)×(n−k−r)
2 ; after the last iteration it will

be in the form Ĥ = (Q | id[n−k]), where Q results from the computations on X.

Figure 3.2: Parity Check Matrix H during the fourth iteration. B ∈ Fr×r2 is the block that
the Gaussian elimination process is currently working on. id := id[r] are �nished blocks.

Gaussian elimination process in combination with this optimization as follows:

time {randomize()[o3.1.1, o3.1.4]}

≈
dn−k

r
e∑

l=1

1

2
(n− k)(r2 − r) + 2r+1(n− lr) + (n− k)(n− lr) (3.4)

=
(n− k)2(r − 1)

2
+
n− k
r

[
2r+1n+ (n− k)n

]
−
dn−k

r
e∑

l=1

lr(2r+1 + n− k)

=
(n− k)2(r − 1)

2
+

(n− k)2r+1n

r
+

(n− k)2n

r
−
(

(n− k)2

2r
+
n− k

2

)
(2r+1 + (n− k))

≈ 2r+1(n− k)2

r
+

(n− k)3

r
− 2r+1(n− k)2

2r
− (n− k)3

2r
(3.5)

=
1

2

(
2r+1(n− k)2

r
+

(n− k)3

r

)
(3.6)

Note that equation (3.5) is a rough estimate of the previous equation neglecting all poly-
nomials equal to O((n − k)2). However equation (3.6) is su�cient to get an idea of
the number of binary operations of one Gaussian elimination process with this optimiza-
tion. As one might see, choosing r = log2(n − k) − 1 is probably optimal, because any
other choice would make one part of the sum in equation (3.6) become larger. This
observation even holds for every one of the l iterations. For this choice of r we get

time {randomize()[o3.1.1, o3.1.4]} ≈ (n−k)3

log2(n−k)−1 , which seems signi�cantly better than the
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runtime of the original Gaussian elimination.
Bernstein, Lange and Peters did a similar, but possibly more precise analysis and state
in [14] that "the optimal choice of r is roughly log2(n− k)− log2(log2(n− k)) but interacts
with the optimal choice of x" for optimization 3.1.3.
Also observe that any choice of 2 ≤ r ≤ x ≤ n − k is bene�cial for the runtime of algo-
rithm 3.1, if we compute the intermediate sums whenever we need them ("on demand"),
but also cache them. In that case we gain an advantage over the original runtime whenever
any intermediate sum was previously computed (neglecting the time to look up the precom-
puted sums, e.g. from an array).
Regarding the memory consumption of algorithm 3.1 in combination with this optimization
we have mem {randomize()[o3.1.4]} = O(n2 + r(n− k) + 2r(n− r)).

Table 4.1 contains an overview of the previous three optimization techniques.
All of the optimization techniques explained here can help to improve the runtime of any
of the algorithms presented in the next sections. Any more optimization techniques to
speed up the Gaussian elimination process in general may also be considered.
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3.2 Prange

In 1962 Eugene Prange described the �rst information set decoding algorithm in [27], which
is basically algorithm 3.1 with the function searchALG() as de�ned by algorithm 3.2. He
observed that for ~εI = ~0, i.e. if the k entries of the error vector ~ε indexed by the in-
formation set I all happen to be zero, then the syndrome ~ς reveals the entries of ~εI∗

(I∗ := {1, . . . , n} \ I). We can easily verify this observation from equation (2.3). Also note
that all of the w-many errors must occur in ~εI∗ , if ~εI = ~0 ∈ Fk2. In that case we have
~εI∗ = ~ς according to equation (2.3) and thus wt (~εI∗) = wt (~ς) = w, which is exactly the
condition that we test in line 1 of algorithm 3.2.

Algorithm 3.2: searchPrange()

Input: parity check matrix Ĥ = (Q | id[n−k]) ∈ F(n−k)×n
2 , syndrome ~ς ∈ Fn−k2 ,

w = wt (~e)
Output: success indicator (true/false), error vector ~ε ∈ Fn2
if wt (~ς) = w then1

~εI := ~0 ∈ Fk22

~ε← prepend(~εI , ~ς) // ~ς = ~εI∗3

return (true,~ε)4

else5

return (false,~0)6

end7

Remark 3.2.1. Prange's algorithm is sometimes also called "plain information set decod-
ing".

Remark 3.2.2. Algorithm 3.2 uses the fact that wt (~εI∗) = w ⇒ wt (~εI) = 0 ⇒ ~εI = ~0 ∈
Fk2. However the zero-vector is the only vector, where the weight directly de�nes the vector.
If we wanted to check for a di�erent pattern ~εI with a di�erent weight 0 ≤ p ≤ w, this
would imply

(
k
p

)
possibilities for ~εI . Choosing p = 0 seems a natural choice to keep this

number low. Nevertheless this choice is not optimal as will be explained in the next section.

Obviously we have

time {searchPrange()} = O(1) (3.7)

mem {searchPrange()} = O(n) (3.8)

PRPrange[success = true] =

(
n−k
w

)(
n
w

) (3.9)

The asymptotic runtime is evaluated in the next section as Prange's algorithm is just a
special case (p = 0) of Lee-Brickell's algorithm.
Even though the other algorithms have signi�cantly better success probabilities than
Prange's algorithm, none of them exposes the nice feature of not adding any additional
runtime during each iteration (time {searchPrange()} = O(1)). So whenever we execute
an algorithm with a structure as in algorithm 3.1, it does not hurt to additionally check

the Prange condition wt (~ς)
?
= w. This might be interesting in practice, but is negligible

in theory due to the comparatively small success probability of Prange's algorithm.
Other than that, Prange's algorithm is only interesting for historical reasons.

26



3.3 Lee-Brickell

Lee-Brickell's algorithm is a generalization of Prange's algorithm for arbitrary patterns of ~εI
with wt (~εI) = p, 0 ≤ p ≤ w. The algorithm was published by Pil Joong Lee and Ernest
F. Brickell in [28] and can be described as algorithm 3.1 with the function searchALG() as
de�ned by algorithm 3.3.
It is based on the idea that it is unlikely for ~ε to spread all 1's over its last n−k coordinates
(i.e. over ~εI∗ only) as with Prange's algorithm. Instead, Lee and Brickell decided to allow
exactly p many 1's in the �rst k coordinates of ~ε, i.e. during each iteration of 3.1 they
hoped for an error vector ~ε with wt (~εI) = p.
Since for p > 0 there are

(
k
p

)
many possible vectors ~εI with wt (~εI) = p, algorithm 3.3

iterates over all of them in line 1.

Remark 3.3.1. Iterating over all of these vectors can be achieved very e�ciently. We can
start with the vector ~εI,1 = (1, 1, 1, . . . , 0, 0, 0)T with p many 1's at the front. Assuming a
vector ~εI,j we can then generate the next ~εI,j+1 as follows:

1. Find the rightmost 1 followed by a 0 at position i in ~εI,j (or keep track of that
position). If this is not possible, stop.

2. Count the number of 1's at the positions ≥ i and set all of them to 0 (including the 1
at position i). Store this number in the variable β.

3. Set the entries at the positions i + 1, . . . , i + 1 + β to 1. Use the resulting vector as
~εI,j+1.

For each of the vectors ~εI with wt (~εI) = p, equation (2.3) (in F2) is used to compute the

corresponding ~εI∗ in line 2. If wt (~εI∗)
?
= w − p holds in line 3, we know that the resulting

error vector ~ε has weight w. As already explained in section 2.2.3 only the real error vec-
tor ~ε can have that weight, because the existence of any other error vector with the same
weight would prevent us from uniquely decoding the linear code.
If none of the ~εI∗ 's happen to satisfy the condition in line 3 of algorithm 3.3, success =
false is returned in line 8 and we can simply hope for a di�erent information set I that
exposes the desired property wt (~εI) = p during the next iteration of algorithm 3.1.

Algorithm 3.3: searchLB()

Input: parity check matrix Ĥ = (Q | id[n−k]) ∈ F(n−k)×n
2 , syndrome ~ς ∈ Fn−k2 ,

w = wt (~e), algorithmic parameter 0 ≤ p ≤ w
Output: success indicator (true/false), error vector ~ε ∈ Fn2
foreach ~εI ∈ Fk2,wt (~εI) = p do1

~εI∗ := ~ς +Q~εI2

if wt (~εI∗) = w − p then3

~ε← prepend(~εI ,~εI∗)4

return (true,~ε)5

end6

end7

return (false,~0)8

The parameter p needs to be optimized with regard to the overall runtime of algorithm 3.1
in combination with algorithm 3.3. To do so, we �rst need to de�ne the important algo-
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rithmic properties:

time {searchLB()} =

(
k

p

)
· (p(n− k) +O(1)) (3.10)

mem {searchLB()} = O(n) (3.11)

PRLB[success = true] =

(
k
p

)(
n−k
w−p
)(

n
w

) (3.12)

Thereby time {searchLB()} =
(
k
p

)
· (p(n− k) +O(1)) follows from the observations that

each line of algorithm 3.3 is executed exactly
(
k
p

)
times and that most work is done during

the multiplication Q~εI in line 2 of algorithm 3.3. Multiplying the matrix Q ∈ F(n−k)×k
2

by the vector ~εI ∈ Fk2 with wt (~εI) = p means a selection of exactly p columns of Q and
an addition of these columns that each have n − k entries. Hence the complexity of this
multiplication is p(n− k) per iteration of algorithm 3.3.
In practice it is wise to compute time {isd()} = time {Lee-Brickell} for a concrete param-
eter set (n, k, w) according to equation (3.1) for any choice of p ∈ {0, 1, 2, 3, 4} and simply
use the one that features the best runtime of algorithm 3.1. Alternatively it is possible to
use the following explicit bound on PRLB[success = true] provided by [15, 25] in combi-
nation with equation (3.1) and any number of optimizations to (roughly) determine the p
that results in the best runtime for a parameter set (n, k, w):

PRLB[success = true] = 2−α(R,W )n 1

p!

(
RWn

1−R−W

)p 1

β(R,W )
errLB(n, k, w, p) (3.13)

R = k
n is the code rate, W = w

n the error rate and α(R,W ) is de�ned as in de�nition 2.2.8.
Regarding the other unknowns we have

β(R,W ) :=
√

(1−R−W )/((1−R)(1−W )) (3.14)(
(1− p

k )(1− p
w )

1 + p
n−k−w

)p
e−

1
12n(1+ 1

1−R−W ) < errLB(n, k, w, p) < e
1

12n( 1
1−R+ 1

1−W )

with lim
n→∞

errLB(n, k, w, p) = 1

Note that we assume 0 < W < 1−R < 1, which implies 0 < β(R,W ) < 1.
Although we cannot determine errLB(n, k, w, p) exactly, the bound above might be suf-
�cient to compute the optimal p for a parameter set (n, k, w) in combination with the
equations from section 3.1.
In theory one usually determines the optimal p as the one that features the best asymp-
totic (n→∞) runtime of algorithm 3.1. This p however is not necessarily optimal for all
parameter sets (n, k, w). In any case it is important to respect the amount of work coming
from the randomize() function in equation (3.1) including possible optimizations. With-
out time {randomize()} in equation (3.1) p = 0, i.e. Prange's algorithm, would always
be the optimal choice. For the overall runtime of Lee-Brickell's algorithm we know from
equation (3.1) and the previously mentioned explicit bound that

time {Lee-Brickell} = 2α(R,W )n · p!
(

1−R−W
RWn

)p
β(R,W ) · errLB(n, k, w, p)−1

·
(
O(n3) +

(
Rn

p

)
· (pn(1−R) +O(1))

)
(3.15)

time {Lee-Brickell (p = 0)} = 2α(R,W )n · β(R,W ) · errLB(n, k, w, 0)−1 · O(n3)
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time {Lee-Brickell (p = 1)} = 2α(R,W )n · 1−R−W
RWn

β(R,W ) · errLB(n, k, w, 1)−1

·
(
O(n3) +Rn2(1−R)

)
= 2α(R,W )n · 1−R−W

RW
β(R,W ) · errLB(n, k, w, 1)−1 · O(n2)

time {Lee-Brickell (p = 2)} = 2α(R,W )n · (1−R−W )2

(RWn)2
β(R,W ) · errLB(n, k, w, 2)−1

·
(
O(n3) + 2Rn2(Rn− 1)(1−R)

)
= 2α(R,W )n · (1−R−W )2

(RW )2
β(R,W ) · errLB(n, k, w, 2)−1 · O(n)

time {Lee-Brickell (p = 3)} = 2α(R,W )n · (1−R−W )3

(RWn)3
β(R,W ) · errLB(n, k, w, 3)−1

·
(
O(n3) + 3Rn2(Rn− 1)(Rn− 2)(1−R)

)
(3.16)

As errLB(n, k, w, p) = Θ(1), these equations enable us to easily determine the asymptoti-
cally optimal p: It seems as if for p ∈ {0, 1} the Gaussian elimination step from randomize()
in algorithm 3.1 is dominant, whereas for p ≥ 2 the

(
k
p

)
iterations in searchLB() become

more important. p = 2 looks like the asymptotically optimal choice, although p = 3
might be better for certain parameters (R,W ). Note that these asymptotic observations
are independent of any of the optimizations mentioned in section 3.1. The e�ect of opti-
mization 3.3.1 is also negligible for the choice of an asymptotically optimal p as the most
important factor

(
k
p

)
does not vanish.

May, Meurer and Thomae provide a rough bound for Lee-Brickell's algorithm of 20.05752n

for p = 0 in [21]3.
From the explicit bounds above we can also compute the factor that we asymptotically
gain from using Lee-Brickell's algorithm (p = 2) instead of Prange's algorithm as

Adv(Lee-Brickell (p = 2) > Lee-Brickell (p = 0)) = Adv(Lee-Brickell (p = 2) > Prange)

=
(1−R−W )2

(RW )2
·Θ(1) · O

(
1

n2

)

=


O
(

log2(n)2

n2

)
for W = Θ

(
1

log2(n)

)
, R = Θ(1)

O
(

1
n2

)
for W = Θ(1), R = Θ(1)

In order to understand those equations, recall from remark 2.2.8 that W = Θ(1/ log2(n))
is true for Goppa codes and thus the McEliece cryptosystem, whereas W = Θ(1) is true
for many other linear codes.
Actually these equations are even exact asymptotic bounds (i.e. Θ instead of O), if only
optimization 3.1.1 is used. Otherwise the exact bounds might be better. The same is true
for equation (3.15) and the other equations.

Optimizations

Optimization 3.3.1 (Reusing additions of the (n−k)-bit vectors). As already mentioned
the probably most expensive computation in algorithm 3.3 is Q~εI ,wt (~εI) = p in line 2, which
we have to do for each set of p out of the k columns of Q, i.e.

(
k
p

)
times. Q~εI basically

means an addition of exactly those columns of Q that are selected by the entries of ~εI . The

3Their analysis ignores time {randomize()}, which makes p = 0 optimal.
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naive way would mean p − 1 additions of column vectors ~vi ∈ Fn−k2 . As chances are high
that the next selection of p columns contains some of the previously selected columns, most
of these additions reoccur. We can prevent this by �rst computing all

(
k
2

)
possible sums

of 2 columns of Q; each sum meaning one addition in Fn−k2 . Then we can add an extra
column to the previous results and thus compute all

(
k
3

)
sums of 3 columns of Q; and so

on until we compute the desired
(
k
p

)
sums of p columns of Q.

In this case we have

time {searchLB()[o3.3.1]} = (n− k)

((
k

2

)
+

(
k

3

)
+ . . .+

(
k

p

))
+O(1) ·

(
k

p

)
=

(
k

p

)
·

(
(n− k)

(
1 +

(
k
p−1

)(
k
p

) + . . .+

(
k
2

)(
k
p

))+O(1)

)

=

(
k

p

)
·

(n− k)

1 +
p

k − p+ 1
+ . . .+

(k − p)!p!
(k − 2)!2!︸ ︷︷ ︸

δ(k,p)

+O(1)



So for the operation Q~εI we gain a runtime factor of p
1+δ(k,p) over the naive way of doing

it. Note that δ(k, p) � 1 as long as k � p. In contrast we require more memory as we
compute the

(
k
p

)
sums all at once and need to save them in order to iterate over them in

line 1 of algorithm 3.3. Thus we get a memory consumption ofmem {searchLB()[o3.3.1]} =
O(
(
k
p

)
(n− k) + n), which makes this optimization a classical time-memory trade-o�.

Optimization 3.3.2 (Early abort). The operation Q~εI in line 2 of algorithm 3.3 means
a selection and addition of p columns of Q, i.e. we need to compute p− 1 column sums on
a length of n − k bits. An early abort strategy can reduce this number: Since we are only
interested in an ~εI∗ with wt (~εI∗) = w − p (line 3), we can iteratively compute the entries
of ~εI∗ ∈ Fn−k2 (i.e. we know (~εI∗)[i] during iteration i) and check their weight during each
iteration. If we see a weight larger than w − p, we can already stop our computations
for that candidate for the real ~εI∗. As Q and thus ~εI∗ may be assumed to be uniformly
distributed, we may expect such an early abort after roughly 2(w− p+ 1) iterations. So all
in all we can compute every ~εI∗ with at about 2(w − p+ 1)(p− 1) ≈ 2(w − p+ 1)p instead
of (n− k)(p− 1) ≈ (n− k)p binary operations. This results in

time {searchLB()[o3.3.2]} :=

(
k

p

)
· (2p(w − p+ 1) +O(1))

whilst the memory consumption remains the same.
Note that the "+1" in the factor (w − p+ 1) can become signi�cant for the choice p = w.

Remark 3.3.2. Note that the previous two optimizations can be used together, if we apply
optimization 3.3.1 for columns of length ≈ 2(w − p+ 1) only.

Other than that there are methods to re�ne Lee-Brickell's algorithm by additionally requir-
ing that ~εI∗ has weight 0 on l positions. This idea is meant to reduce the number of binary
operations required in line 2 of algorithm 3.3 as we can �rst compute (~εI∗)[l] = ~ς[l] +(Q~εI)[l]

(pl binary operations), check whether (~εI∗)[l] = ~0 ∈ Fl2 holds and do more expensive op-
erations such as the one of line 2 only in that case. However �xing l-many zeroes within
the error vector ~ε reduces the success probability and thus increases the overall number of
iterations. A similar but more advanced idea is employed for Stern's algorithm, which is
presented in the next section. Therefore we do not discuss it in depth for Lee-Brickell's
algorithm; the interested reader is rather referred to [31].
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3.4 Stern

To understand Stern's algorithm from [22] it is necessary to reconsider equation (2.2):
Denote by ~εI1 and ~εI2 the entries of the error vector ~ε indexed by the sets I1, I2 ⊆ I. As
usual, I = {1, 2, . . . , k} is the currently selected information set. Assuming I1 ∪ I2 = I
and I1 ∩ I2 = ∅ we can then rewrite the term Q~εI as Q(~εI1,0 + ~εI2,0), where ~εI1,0 ∈ Fk2 and
~εI2,0 ∈ Fk2 are the vectors ~εI1 and ~εI2 with zeros padded at the bottom and top respectively.
A visual explanation is given by �gure 3.3.

Q~εI =

( )
Q1 Q2






~εI1

~0

+




~0

~εI2


Figure 3.3: Q~εI = Q(~εI1,0 + ~εI2,0)

Let us de�ne Q1 as those columns of Q indexed by I1 and Q2 as those indexed by I2. It
immediately follows that

Q~εI = Q1~εI1 +Q2~εI2 (3.17)

To be precise, Stern decided to choose two uniform subsets I1, I2 of (almost) identical size
from the information set I. Since the information set I was already chosen uniformly at
random by the column permutations of randomize() in algorithm 3.1, we can simply de�ne
I1 := {1, . . . , dk2e} and I2 := {dk2e+ 1, . . . , k}. Stern adapted Lee-Brickell's idea to look for
error vectors ~ε with wt (~εI) = p by looking for the vectors ~εI1 and ~εI2 as de�ned above with
wt (~εI1) = wt (~εI2) = p

2 in the lines 1 and 2 of algorithm 3.4. Note that this change implies
less possibilities4 for ~εI than in Lee-Brickell's algorithm (cf. section 3.3). However even if
we used every combination of ~εI1 and ~εI2 to express ~εI and then compute ~εI∗ as ~ς + Q~εI
(as in Lee-Brickell's algorithm), we would still get lots of iterations without any means
to control that number. That's probably why Stern introduced the additional parameter
0 < l ≤ n− k and demanded that (~εI∗)[l] = ~0, i.e. that the �rst l coordinates of ~εI∗ all be
zero. So all in all he decided to look for an error vector ~ε with a weight distribution as
depicted in �gure 3.4. A comparison of the weight distributions of the error vector ~ε for
various information set decoding algorithms is shown in �gure 4.2 on page 69.

←−−−−−− k −−−−−−→ ←−−−−−−−−− n− k −−−−−−−−−→
←− l −→ ←−−−− n− k − l −−−−→

Stern p/2 p/2 0 w − p

Figure 3.4: weight distribution of ~ε as demanded by Stern

If we assume (~εI∗)[l] = ~0, we require from equation (2.3) in combination with equation (3.17)
that

~ς[l] + (Q~εI)[l] = ~ς[l] + (Q1~εI1)[l] + (Q2~εI2)[l] = (~εI∗)[l]
!

= ~0 (in F2) (3.18)

So basically we can look for vectors ~εI1 and ~εI2 so that

~ς[l] + (Q1~εI1)[l]
!

= (Q2~εI2)[l]

4A factor of
(
k
p

)−1(k/2
p/2

)2
for this change only (as long as we choose p to be identical for both algorithms).
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Whenever such a collision between ~ς[l] + (Q1~εI1)[l] and (Q2~εI2)[l] occurs, we found an error
vector that exposes the desired weight distribution from �gure 3.4 at least for the �rst
k + l entries. Equation (2.3) enables us to compute the whole ~εI∗ and thus check the
weight distribution for the remaining n− k − l entries.
In line 1 of algorithm 3.4 we compute ~ς[l] + (Q1~εI1)[l] for every possible ~εI1 with weight p

2
and store the results in a list L1. In line 2 we compute the �rst l entries of Q2~εI2 for
every ~εI2 with weight p

2 and store the results in a list L2. Finally we look for the afore-
mentioned collisions in line 3 of algorithm 3.4. Whenever such a collision is found, ~εI∗ is
computed according to equation (2.3) and Stern's algorithm tests whether ~εI∗ has the cor-
rect weight w− p in line 6. If it does, the real error vector ~ε was found and success = true
is returned. If it does not, we can hope for another collision or better luck with another
information set during the next iteration of algorithm 3.1.

Remark 3.4.1. The list L2 is not really needed: We could also check for collisions (line 3
of algorithm 3.4) directly after computing a single entry of L2 (line 2). Nevertheless we
introduced L2 for the sake of clarity as it makes runtime observations easier to under-
stand. Not using L2 also reduces the overall memory consumption, which is re�ected by
equation (3.20).

Algorithm 3.4: searchStern()

Input: parity check matrix Ĥ = (Q | id[n−k]) ∈ F(n−k)×n
2 , syndrome ~ς ∈ Fn−k2 ,

w = wt (~e), algorithmic parameter 0 ≤ p ≤ w, algorithmic parameter
0 ≤ l ≤ n− k − w + p

Output: success indicator (true/false), error vector ~ε ∈ Fn2
foreach ~εI1 ∈ Fdk/2e2 ,wt (~εI1) = p

2 do L1[~εI1 ]← ~ς[l] + (Q1~εI1)[l]1

foreach ~εI2 ∈ Fbk/2c2 ,wt (~εI2) = p
2 do L2[~εI2 ]← (Q2~εI2)[l]2

foreach ~εI1 ,~εI2 ,L1[~εI1 ] = L2[~εI2 ] do3

~εI ← prepend(~εI1 ,~εI2)4

~εI∗ := ~ς +Q~εI5

if wt (~εI∗) = w − p then6

~ε← prepend(~εI ,~εI∗)7

return (true,~ε)8

end9

end10

return (false,~0)11

Let us have a look at the properties of this algorithm:

time {searchStern()} =

(
k/2

p/2

)
pl +

(k/2
p/2

)2
2l

· (p(n− k − l) +O(1)) (3.19)

mem {searchStern()} = O
(

(l + k/2) ·
(
k/2

p/2

))
(3.20)

PRStern[success = true] =

(k/2
p/2

)2(n−k−l
w−p

)(
n
w

) (3.21)

These equations follow from relatively basic observations: Assuming that k and p are
even, we have exactly

(k/2
p/2

)
many ~εI1 's and the same number of ~εI2 's in line 1 and line 2

of algorithm 3.4. According to remark 3.4.1 we need to store at least the list L1. For each
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of its entries we need to save l bits as well as the vectors ~εI1 themselves, which explains
equation (3.20).
The terms (Q1~εI1)[l] and (Q2~εI2)[l] with wt (~εI1) = wt (~εI2) = p

2 mean a selection of p
2

columns of Q1 or Q2 and an addition of the �rst l bits of these columns. Therefore
line 1 and 2 of algorithm 3.4 cost roughly

(k/2
p/2

)
pl binary additions/operations. Naively

computing line 5 of algorithm 3.4 would mean a selection of p columns of Q and adding
up those n − k − l bit columns (the �rst l bits of ~εI∗ are known to be zero). Since we
assume the matrices Q1 and Q2 to be uniform, the resulting vectors ~εI1 and ~εI2 can also be
assumed to look uniform. Thus we may expect a l-bit collision between any two of those

vectors to occur with probability 1
2l
. As

(k/2
p/2

)2
possible combinations of ~εI1 and ~εI2 exist,

we obtain equation (3.19).

Remark 3.4.2. It is an assumption of our runtime model that �nding all collisions be-
tween the entries of the two lists L1,L2 can be achieved in time O(|L1|+ |L2|+C) (where
0 ≤ C ≤ |L1||L2| denotes the expected number of collisions) and therefore does not introduce
any logarithmic factors into equation (3.19). Let us outline how this can be done in prac-
tice: Instead of using the list L1, one would usually employ a map M1 (e.g. a hash map)
and store every ~εI1 at the position indexed by the result of the computation ~ς[l] + (Q1~εI1)[l],
i.e. M1[~ς[l] + (Q1~εI1)[l]] ← ~εI1. Note the inverse order in comparison to line 1 of algo-

rithm 3.4. So the map is basically a function M1 : Fl2 → Fdk/2e2 ; just imagine storing

values ~εI1 ∈ Fdk/2e2 in 2l many buckets. Since Q is a random matrix, we may expect(k/2
p/2

)
· 2−l many ~εI1's within each bucket. If we choose l ≈ log2

((k/2
p/2

))
(the most common

choice), this number is roughly 1, so that lookups within M1 can be expected to only take
constant time, if a hash map is used. Nevertheless it is possible to store multiple ~εI1's in the
same bucket by allowing the hash map to store (hopefully short) lists in each of its buckets.
Respecting remark 3.4.1 (i.e. not using another map or list) we can then iterate over all
possible ~εI2 in line 2 of algorithm 3.4 and check for each of them, whether M1[(Q2~εI2)[l]]
contains one or multiple ~εI1's. If it does, we found a collision between these ~εI1's and the
current ~εI2 without requiring any additional overhead.
More concrete implementation details can be found in [14, Section 6].

Equation (3.21) follows from standard observations regarding the weight distribution of ~ε
required by Stern's algorithm to succeed (cf. �gure 3.3).
For p < l and 0 < W < 1 − R < 1 we can once again obtain an explicit bound for the
success probability of Stern's algorithm from [15] (also in [23], pp. 106-108). Combining
equation (3.1) with this bound and substituting5 k = Rn,w = Wn we get the following
equations for the overall runtime of Stern's algorithm time {isd()} = time {Stern}:

time {Stern} = 2α(R,W )n ·
(

1−R−W
RW

)p( 1−R
1−R−W

)l
β(R,W ) · err−1

ST

·((p/2)!)2

(n/2)p

O(n3) +

(
Rn/2

p/2

)
pl +

(Rn/2
p/2

)2
2l

· pn(1−R− l

n
)


time {Stern (p = 0)} = 2α(R,W )n

(
1−R

1−R−W

)l
β(R,W ) · err−1

ST · O(n3)

time {Stern (p = 2)} = 2α(R,W )n

(
1−R−W

RW

)2( 1−R
1−R−W

)l
β(R,W ) · err−1

ST

5The substitution makes sense as k and w grow with n, whereas R and W can be assumed to be
"relatively" constant (cf. remark 2.2.8).
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· 1

(n/2)2

(
O(n3) +Rnl +

(Rn)2

2l
· 1

2
n(1−R− l

n
)

)
time {Stern (p = 4)} = 2α(R,W )n

(
1−R−W

RW

)4( 1−R
1−R−W

)l
β(R,W ) · err−1

ST

· 4

(n/2)4

(
O(n3) +Rn(

Rn

2
− 1)l +

((Rn2 )(Rn2 − 1))2

2l
· n(1−R− l

n
)

)

time {Stern (p = 6)} = 2α(R,W )n

(
1−R−W

RW

)6( 1−R
1−R−W

)l
β(R,W ) · err−1

ST

· 36

(n/2)6

(
O(n3)+

Rn

2
(
Rn

2
− 1)(

Rn

2
− 2)l +

((Rn2 )(Rn2 − 1)(Rn2 − 2))2

2l
· 1

6
n(1−R− l

n
)

)

Note that the functions α(R,W ) and β(R,W ) are de�ned as in de�nition 2.2.8 and equa-
tion (3.14); errST := errST (n, k, w, l, p) is an error function with lim

n→∞
errST = 1 for p ≤ l,

which is more precisely de�ned in [23, section 5.4.3].
Several observations for the asymptotic runtime of Stern's algorithm follow from these
equations:

1. For p = l = 0 we obtain Prange's algorithm and its runtime (cf. section 3.2).

2. It seems as if the time spent in the Gaussian elimination step of algorithm 3.1 (O(n3))
becomes negligible for p ≥ 4. Thus the optimizations from section 3.1 are asymptot-
ically irrelevant for these p.

3. The factors
(

1−R−W
RW

)p
and

(
1−R

1−R−W

)l
are both > 1 and become signi�cantly more

important for large p and l. They make it very hard to �nd asymptotically optimal
parameter choices for arbitrary R and W .

4. In order to minimize
(Rn/2
p/2

)
pl+

(Rn/2p/2 )
2

2l
·pn(1−R− l

n), we'll probably want to balance

the term
(Rn/2
p/2

)
pl with

(Rn/2p/2 )
2

2l
· pn(1 − R − l

n), i.e. choose the parameter l in the

range log2(
(Rn/2
p/2

)
) ≤ l ≤ log2(

(Rn/2
p/2

)
) + log2(n(1 − R − l

n)) ⇒ l = Õ
(
Rn
2 ·H2( p

Rn)
)

(cf. remark 2.2.12).
Note that this choice of the parameter l also allows for a practical application of
remark 3.4.2.

In practice it seems to be the best idea to use equation (3.19) in combination with equa-
tion (3.1) instead of any of the previous equations to �nd the optimal parameters p and l
for a concrete parameter set (n, k, w).
It is common to set the parameter p to a relatively small integer: For example Chabaud
uses p ∈ {4, 6} in [13] for practical applications (cf. table 1 in [13] and note that p = 2p′,
where p′ is used to denote Chabaud's parameter p). The table provided by Peters in [24]
also indicates choices of p ∈ {4, 6} to be optimal (for q = 2). Once again note that these
are the choices where the Gaussian elimination step from algorithm 3.1 becomes negligible.
The rough bounds 20.05564n for the runtime of Stern's algorithm and 20.0135n for the memory
consumption of Stern's algorithm for optimal parameters p and l can be obtained from [21]
and prove an asymptotically exponential improvement over Lee-Brickell's algorithm.
Generalizations of Stern's algorithm over Fq, q ≥ 2 exist (see for example [23]), but are not
discussed here.
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Optimizations

Optimization 3.4.1 (Multiple choices of Z). This optimization is another e�ort at re-
ducing the e�ect of the Gaussian elimination step (cf. algorithm 3.1) on Stern's algorithm.
If you once again look at �gure 3.4, it becomes obvious that the position of the ~0-vector
within ~εI∗ ∈ Fn−k2 was arbitrarily chosen. Actually we could also put it at the end of ~εI∗,
somewhere in the middle or even de�ne an index set Z ⊂ I∗ with |Z| = l and check for
collisions there (on ~εZ). Note that this set does not even need to contain coherent indices.
There are

(
n−k
l

)
possibilities to choose such a set Z.

The basic idea of this optimization is to introduce a new parameter m, choose disjoint sets
Z1, Z2, . . . , Zm ⊂ I∗ and execute searchStern() (algorithm 3.4) for each of these m sets
(i.e. look for collisions on ~εZi , 1 ≤ i ≤ m) before returning to the main loop of algo-
rithm 3.1. At �rst sight we save the cost of m − 1 Gaussian elimination processes. At
second sight we observe that the iterations over Zi, 1 ≤ i ≤ m are not independent any-
more as they share a common information set I. Nevertheless Bernstein, Lange and Peters
claim in [14] that this optimization increases "the chance of �nding any particular weight-w
word [. . .] by a factor of nearly m" and that it is worthwhile if the Gaussian elimination
"is more than about 5% of the original computation". Whether or not a small value of m
might be bene�cial for a concrete parameter set can be found out with the program from [24].
For su�ciently large n however this optimization is irrelevant, simply because the complete
Gaussian elimination step is asymptotically negligible in Stern's algorithm (p ≥ 4).

Optimization 3.4.2 (Reusing additions of the l-bit vectors). We can reuse the idea from
optimization 3.3.1 for line 1 and line 2 of Stern's algorithm; however the vectors have only
l bits this time. The analysis is essentially the same: If we de�ne time {searchStern()[o3.4.2]} :=

Z +
(k/2
p/2

)2
/2l · (p(n− k − l) +O(1)) (cf. equation (3.19)) we get

Z : = 2l

((
k/2

2

)
+

(
k/2

3

)
+ . . .+

(
k/2

p/2

))

= 2l

(
k/2

p/2

)1 +
p/2

k/2− p/2 + 1
+ . . .+

(k/2− p/2)!(p/2)!

(k/2− 2)!2!︸ ︷︷ ︸
δ(k/2,p/2)


with δ(k/2, p/2) � 1 as long as k � p. Thus we save a factor of p

2(1+δ(k/2,p/2)) for the

Z-part of time {searchStern()}, if we apply this optimization. The memory consumption
increases by a constant factor.

Note that it does not seem helpful to use this optimization for line 5 of algorithm 3.4,

simply because we may assume that the number of collisions
(k/2
p/2

)2
· 2−l is too small

(≈
(k/2
p/2

)
<
(
k
p

)
· p−1 for l ≈ log2(

(k/2
p/2

)
)) to make it worthwhile.

Optimization 3.4.3 (Early abort). We can also apply the idea from optimization 3.3.2
to Stern's algorithm, so that we may expect to only need at about 2(w − p + 1) instead of
(n− k − l)p binary operations for line 5 of algorithm 3.4. This results in

time {searchStern()[o3.4.3]} :=

(
k/2

p/2

)
pl +

(k/2
p/2

)2
2l

· (2p(w − p+ 1) +O(1))

whilst the memory consumption remains the same.
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In contrast to optimization 3.4.1 and the optimizations from section 3.1 the previous two
optimization techniques improved the asymptotically relevant parts of Stern's algorithm,
which underlines their importance. They were all introduced in [14].
The following idea comes from [26, 23, 25]:

Optimization 3.4.4 (Birthday Speedup). In 2009 Finiasz and Sendrier came up with
the idea to modify algorithm 3.4, which resulted in an algorithm that looks similar to algo-
rithm 3.5 (cf. table 2 in [26]). It is also described in [23, 25]. The di�erences are subtle,
but grave:

• The error vectors ~εI1 and ~εI2 are chosen uniformly at random from the same vector
space Fk2, i.e. �gure 3.3 is incorrect for algorithm 3.5 as ~εI1 and ~εI2 may contain 1's
in every possible position. ~εI1 and ~εI2 might even be identical.

• Hence the corresponding information sets I1 and I2 are not necessarily disjoint as
in Stern's original algorithm. Therefore we also need to multiply ~εI1 and ~εI2 by Q
instead of Q1 and Q2 in line 1 and 2 of algorithm 3.5.

• ~εI is simply the sum of ~εI1 and ~εI2 (line 4).

• The new parameter N is meant to limit the number of choices for ~εI1 and ~εI2. It does
not make sense to choose N >

(
k
p/2

)
, because otherwise we could also deterministically

test all possible combinations of p
2 out of k elements.

Remark 3.4.3. Actually Table 2 in [26] is not completely identical to algorithm 3.5:

• Table 2 in [26] also contains the idea to represent the parity check matrix Ĥ di�erently
� we do not use that idea here, but rather introduce it in section 3.6.

• The original algorithmic description neither introduces the parameter N , nor does it
sample the ~εI1's and ~εI2's at random. However they require both for their analysis
(cf. assumption I1/B1 and the appendices in [26]).
However most information set decoding algorithms simply do not sample the ~εI1's
and ~εI2's at random and therefore do not �t into a structure similar to that of al-
gorithm 3.5. Bernstein et al. additionally point out in [19] that their Ball-Collision
Decoding algorithm features an inner loop that is faster by a polynomial factor than
the one assumed for the algorithm in [26]. Therefore the bounds presented in [26] do
not hold for all information set decoding algorithms.

The basic idea is to use the birthday paradox for our purpose and hope for a su�ciently
large amount of collisions in line 3 of algorithm 3.5. Unfortunately the algorithm requires
an entire analysis on its own. For the sake of brevity we just present the results and shortly
comment them:

time {searchStern()[o3.4.4]} = Npl +
N2

2l
· (p(n− k − l) +O(1)) (3.22)

mem {searchStern()[o3.4.4]} = O (N · (l + k)) (3.23)

PRStern[success = true][o3.4.4] =

(
k
p

)(
n−k−l
w−p

)(
n
w

)
1−

(
1−

(
p

p/2

)(
k

p/2

)−2
)N2

 (3.24)

Equation (3.22) and equation (3.23) follow from the same observations as for Stern's origi-
nal algorithm without optimizations (cf. algorithm 3.4). The success probability looks more
complicated this time though, because the information sets I1 and I2 are not required to be
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Algorithm 3.5: searchStern() with the Birthday Speedup

Input: parity check matrix Ĥ = (Q | id[n−k]) ∈ F(n−k)×n
2 , syndrome ~ς ∈ Fn−k2 ,

w = wt (~e), algorithmic parameter 0 ≤ p ≤ w, algorithmic parameter
0 ≤ l ≤ n− k − w + p, algorithmic parameter 0 ≤ N <

(
k
p/2

)
Output: success indicator (true/false), error vector ~ε ∈ Fn2
repeat N times: choose ~εI1 ∈r Fk2,wt (~εI1) = p

2 ⇒ L1[~εI1 ]← ~ς[l] + (Q~εI1)[l]1

repeat N times: choose ~εI2 ∈r Fk2,wt (~εI2) = p
2 ⇒ L2[~εI2 ]← (Q~εI2)[l]2

foreach ~εI1 ,~εI2 ,L1[~εI1 ] = L2[~εI2 ] do3

~εI := ~εI1 + ~εI24

~εI∗ := ~ς +Q~εI // from here on as in algorithm 3.45

if wt (~εI∗) = w − p then6

~ε← prepend(~εI ,~εI∗)7

return (true,~ε)8

end9

end10

return (false,~0)11

disjoint: If we hope for p-many 1's in the �rst k positions of ~ε and for zeroes in the l fol-
lowing positions, the probability for the real error vector to have such a weight distribution
is
(
k
p

)(
n−k−l
w−p

)(
n
w

)−1
. Furthermore we need to estimate the probability that one of the N2

combinations of ~εI1 and ~εI2 results in the real error vector, if it has the aforementioned
weight distribution. This is not guaranteed as ~εI1 and ~εI2 are chosen uniformly at random.
First note that there are

( p
p/2

)
ways to split the real ~εI into ~εI1 and ~εI2, so that ~εI = ~εI1 +~εI2

holds.

Remark 3.4.4. Thereby it is important to see that the sets I1 and I2 are required to be
disjoint for ~εI = ~εI1 +~εI2 to hold (simply because we also demand wt (~εI) = p and wt (~εI1) =
wt (~εI2) = p

2), even though we allow them not to be. This is somewhat contradictory and is
one of the facts that the algorithm presented in section 3.7 improves upon.

In contrast to the
( p
p/2

)
ways to split the real ~εI into ~εI1 and ~εI2 we randomly pick p

2 1's in

k positions for ~εI1 and ~εI2 in algorithm 3.5, so that the probability for us to "hit" a useful

combination of ~εI1 and ~εI2 is
( p
p/2

)(
k
p/2

)−2
for each of the N2 combinations, which explains

equation (3.24).
Finiasz and Sendrier state in [26] for the overall runtime of Stern's algorithm with the
birthday speedup that

time {Stern[o3.4.4]} ≈ min
p

 2lmin
{(

n
w

)
, 2n−k

}
(1− e−1)

(
n−k−l
w−p

)√(
k+l
p

)


Adv(Stern[o3.4.4] > Stern) = Θ(p−1/4)

They admit that the speedup of Θ(p−1/4) "is rather small in practice". Nevertheless the
idea itself is interesting to see and worth remembering.
Regarding the choice of parameters for Stern's algorithm with the birthday speedup the
following statements hold:

• The parameter p is chosen as in Stern's original algorithm (i.e. p ∈ {4, 6} in practice).

37



• Once again similar to Stern's original algorithm, the parameter l is usually chosen
in a way to balance out the two summands of equation (3.22), i.e. log2(N) ≤ l ≤
log2(N) + log2(n− k − l).

• The new parameter 0 ≤ N <
(
k
p/2

)
hurts in equation (3.22) and helps in equa-

tion (3.24). An example for a sensible choice would be N ≈
( p
p/2

)−1/2( k
p/2

)
, so

that for a(p, k) := N2 =
( p
p/2

)−1( k
p/2

)2
> 1 we have 1 −

(
1−

( p
p/2

)(
k
p/2

)−2
)N2

=

1 −
(
1− a(p, k)−1

)a(p,k)
with lim

n→∞
1 −

(
1− a(p, k)−1

)a(p,k)
= 1 − 1

e
, which means a

chance of 1 − 1
e ≈ 63% to succeed, if the real error vector ~ε has the desired weight

distribution whilst not performing too bad in comparison to Stern's original algorithm
in equation (3.22).

Apart from optimization 3.4.2 the optimizations presented in this section can be applied to
algorithm 3.5 as well. Optimization 3.4.2 would only make sense for N ≈

(
k
p/2

)
, which

annihilates the bene�ts of the birthday speedup.

38



3.5 Ball-Collision Decoding

In 2010 Bernstein, Lange and Peters presented a generalized version of Stern's algorithm
in [19], which they called "Ball-Collision Decoding". They noticed that it is relatively
unlikely for the error vector ~ε to satisfy (~εI∗)[l] = ~0 ∈ Fl2 as it is demanded by Stern's
algorithm (cf. �gure 3.4). Therefore they changed Stern's algorithm in a way that also
allows for vectors (~εI∗)[l] of a certain weight and iterates over all possibilities for (~εI∗)[l]

in a meet-in-the-middle approach. More precisely they decided to introduce a new even
parameter z ≥ 0 (in [19] they actually use a parameter q with z = 2q) and allow for z/2 1's
in the upper half of (~εI∗)[l] and the same number of 1's in the lower half of (~εI∗)[l], which
leads to an overall weight distribution of ~ε as depicted in �gure 3.5.

←−−−−−− k −−−−−−→ ←−−−−−−−−−− n− k −−−−−−−−−−→
←−− l −→ ←−−−− n− k − l −−−−→

BCD p/2 p/2 z/2 z/2 w − p− z

Figure 3.5: weight distribution of ~ε as demanded by the Ball-Collision decoding algorithm

To understand algorithm 3.6 it is su�cient to reconsider equation (3.18) for arbitrary (~εI∗)[l]:

~ς[l] + (Q1~εI1)[l] + (Q2~εI2)[l] = (~εI∗)[l]

⇔ ~ς[l] + (Q1~εI1)[l] = (Q2~εI2)[l] + (~εI∗)[l] (3.25)

So for example equation (3.25) would provide us with one possibility to look for collisions.
Bernstein, Lange and Peters do not use that speci�c possibility in [19] though: Instead
they split (~εI∗)[l] into two parts of the same size and rewrite (~εI∗)[l] as the sum of the
upper part, padded with zeroes at the bottom, with the lower part, padded with zeroes
at the top. Let us denote those two vectors by ~ε1,~ε2 ∈ Fl2 with (~εI∗)[l] = ~ε1 + ~ε2 and
wt (~ε1) = wt (~ε2) = z/2, wt

(
(~εI∗)[l]

)
= z. Then equation (3.26) can be used to search for

collisions.
~ς[l] + (Q1~εI1)[l] + ~ε1 = (Q2~εI2)[l] + ~ε2 (3.26)

The advantage of doing it that way lies in the fact that there are equally many possibilities
for both sides of equation (3.26) (resulting in lists L1 and L2 of equal size), whereas for
equation (3.25) the number of combinations on the right-hand side exceeds the number of
possibilities on the left by far. As indicated by remark 3.5.1 this would result in a less
optimal runtime.
The name "Ball-Collision Decoding" comes from the fact that we basically expand each
~ς[l] + (Q1~εI1)[l] and each (Q2~εI2)[l] from Stern's algorithm by balls of hamming radii z/2 in
algorithm 3.6. Note that we obtain Stern's algorithm (cf. section 3.4) for the choice z = 0.
To understand line 15 of algorithm 3.6, recall that equation (2.3) holds for arbitrary (~εI∗)[l].
To be exact, we do not really need to compute the �rst l bits of ~εI∗ in line 15 of algorithm 3.6,
but this is once again ignored in the algorithmic description for the sake of clarity. We do
not ignore it in the following analysis though:

time {searchBCD()} = pl

(
k/2

p/2

)
+ min{1, z} · l

(
k/2

p/2

)(
l/2

z/2

)

+

(k/2
p/2

)2( l/2
z/2

)2
2l

· p(n− k − l) (3.27)

mem {searchBCD()} = O
(
l

(
k/2

p/2

)(
l/2

z/2

)
+ min{1, z} l

2

(
l/2

z/2

)
+
k

2

(
k/2

p/2

))
(3.28)
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Algorithm 3.6: searchBCD()

Input: parity check matrix Ĥ = (Q | id[n−k]) ∈ F(n−k)×n
2 , syndrome ~ς ∈ Fn−k2 ,

w = wt (~e), algorithmic parameter 0 ≤ p ≤ w, algorithmic parameter
0 ≤ l ≤ n− k − w + p+ z, algorithmic parameter 0 ≤ z ≤ l with
0 ≤ p+ z ≤ w

Output: success indicator (true/false), error vector ~ε ∈ Fn2
foreach ~εI1 ∈ Fdk/2e2 ,wt (~εI1) = p

2 do1

foreach ~u1 ∈ Fdl/2e2 ,wt (~u1) = z
2 do2

~ε1 ← prepend(~u1,~0) // ~0 ∈ Fbl/2c23

L1[~εI1 ,~ε1]← ~ς[l] + (Q1~εI1)[l] + ~ε14

end5

end6

foreach ~εI2 ∈ Fbk/2c2 ,wt (~εI2) = p
2 do7

foreach ~u2 ∈ Fbl/2c2 ,wt (~u2) = z
2 do8

~ε2 ← prepend(~0, ~u2) // ~0 ∈ Fdl/2e29

L2[~εI2 ,~ε2]← (Q2~εI2)[l] + ~ε210

end11

end12

foreach ~εI1 ,~εI2 ,~ε1,~ε2,L1[~εI1 ,~ε1] = L2[~εI2 ,~ε2] do13

~εI ← prepend(~εI1 ,~εI2)14

~εI∗ := ~ς +Q~εI15

if wt (~εI∗) = w − p then16

~ε← prepend(~εI ,~εI∗)17

return (true,~ε)18

end19

end20

return (false,~0)21

PRBCD[success = true] =

(k/2
p/2

)2( l/2
z/2

)2(n−k−l
w−p−z

)(
n
w

) (3.29)

Once again assuming that all of the parameters are even integers, equation (3.29) directly
follows from �gure 3.5. The memory consumption only pays regard to the list L1 as the
second list can be computed "on the �y" according to remark 3.4.1: We require at least
l bits for each sum on the right side of line 4, l/2 bits to save each ~ε1 and k/2 bits for each ~εI1 .
However it should be su�cient to store each ~εI1 and ~ε1 only once, whereas we need to store

the l-bit sums for each of the
(k/2
p/2

)( l/2
z/2

)
combinations resulting in equation (3.28). The

factor min{1, z} is used to respect the case z = 0, i.e. Stern's algorithm. Understanding
equation (3.27) is a little trickier: As usual the operations (Q1~εI1)[l] in line 4 and the
corresponding operation in line 10 of algorithm 3.6 are very expensive operations during
each iteration of the loops started in line 1 and 7. Let us for example take the loop
from lines 1-6: Computing (Q1~εI1)[l] for every ~εI1 means a selection of p/2 columns of Q1

and thus an overall cost of p
2 l
(k/2
p/2

)
. The addition of ~ε1 in the inner loop (lines 2-5 of

algorithm 3.6) is done
( l/2
z/2

)
times for every of the

(k/2
p/2

)
many ~εI1 's. So additionally we get(k/2

p/2

)( l/2
z/2

)
additions of l/2-bit vectors (the upper or lower part being all zero).
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Remark 3.5.1. If we had decided to use equation (3.25) over equation (3.26), all of the
additions of ~ε1 and ~ε2 would have occurred for list L2 only. This would have resulted in an
additional workload of min{1, z} · l2 ·

(k/2
p/2

)( l/2
z/2

)
for ~ε1, but as we have to iterate over all

of these entries to add ~ε2, it means a workload of min{1, z} · l2 ·
(k/2
p/2

)( l/2
z/2

)2
for the second

vector. This is clearly suboptimal to the way chosen by Bernstein et al. in [19], which
is presented here. Nevertheless it is unclear, whether this approach can be made equally
e�cient by picking unbalanced lists for the outer loops, i.e. by making the ~εI1's have a
slightly larger weight than the ~εI2 's.
(Note that we still split (~εI∗)[l] into two parts to respect the weight distribution according to
�gure 3.5; not doing so would result in an even di�erent success probability and complexity.)

The last term in equation (3.27) comes from the fact that we expect
(k/2
p/2

)2( l/2
z/2

)2
· 2−l

collisions in line 13 and thus reach line 15 that many times. We omit the other less
expensive operations.

Remark 3.5.2. Note that we use the term
(k/2
p/2

)2( l/2
z/2

)2
· 2−l to model the expected num-

ber of collisions in line 13 of algorithm 3.6, although the lists L1 and L2 do not contain

uniformly distributed entries. In fact, only a speci�c fraction of
( l/2
z/2

)−1
of their entries

can be assumed to be uniform. You can easily see this from line 4 and line 10, where
everything apart from ~ε1 and ~ε2 is �xed within the inner loop. Certainly, ~ε1 and ~ε2 are not
sampled uniformly at random. Basically L1 and L2 contain

(k/2
p/2

)
uniform entries plus a

factor of
( l/2
z/2

)
variations of each of these entries. So the list entries correlate: For example

whenever we �nd a collision with L1[~εI1 ,~ε1] = L2[~εI2 ,~ε2] in line 13 of algorithm 3.6, we
immediately know that for these speci�c values of ~εI1 ,~εI2 and ~ε1, no other ~ε2 can make that
equation hold, because ~ε1 and ~ε2 contain 1's in disjoint positions6. This fact does not a�ect
the expected number of collisions; however we performed several experiments, which showed
that the variance of the number of collisions is slightly a�ected (cf. appendix D).
To see that the expected number of collisions remains the same, let us �rst reformulate the
problem: We speak of collisions, whenever the equation ~x+ ~ε1 = ~y + ~ε2 ⇔ ~x+ ~y = ~ε1 + ~ε2
for ~x := ~ς[l] + (Q1~εI1)[l] and ~y := (Q2~εI2)[l] holds. Thanks to the uniformity of Q the

vectors ~x, ~y ∈ Fl2 can be assumed to be �xed uniform values, for which we iterate over
many ~ε1,~ε2's, which have a weight distribution as in the l-block of �gure 3.5. Basically we

obtain a collision, if ~x + ~y ∈ M := {prepend(~u1, ~u2), ~u1 ∈ Fdl/2e2 , ~u2 ∈ Fbl/2c2 | wt (~u1) =
wt (~u2) = z/2}. Clearly, the probability for a collision to occur is Pr[~x+ ~y ∈M ] = |M |/2l

with |M | =
( l/2
z/2

)2
for an even l. We do this for

(k/2
p/2

)
vectors ~x and

(k/2
p/2

)
vectors ~y.

It is also important to see that the success probability is not a�ected, if L1 and L2 are not
entirely uniform lists.

No recommendations regarding the choice of parameters for the Ball-Collision Decoding
algorithm are provided in [19]. However Bernstein et al. prove that the choice z = 0,
i.e. Stern's algorithm, is asymptotically suboptimal. Instead they use z = 2 in their
examples. The parameter p has the same role as in Stern's algorithm and is therefore
probably chosen in a similar way. It once again makes sense to choose the parameter l
in a way that balances the terms of equation (3.27), i.e. choose log2(

(k/2
p/2

)( l/2
z/2

)
) ≤ l ≤

log2(
(k/2
p/2

)( l/2
z/2

)
) + log2(n− k − l).

The paper [21] contains a rough bound of 20.05559n for the algorithm.
Bernstein provides a reference implementation at http://cr.yp.to/ballcoll.html.

6This can be exploited in practice.
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Remark 3.5.3. Note that the original algorithm allows for di�erent choices of k, l, p and z
for each of the iterations in line 1-6 and line 7-12 of algorithm 3.6. Balanced choices are
asymptotically optimal though.

Optimizations

We can reuse all of the optimizations from Stern's algorithm (cf. section 3.4) for its gener-
alisation:

Optimization 3.5.1 (Reusing additions of the l-bit vectors). We can apply this technique
four times within algorithm 3.6: During the matrix operations in line 4 and 10 analogously
to optimization 3.3.1 as well as for the addition of both ~ε1 and ~ε2. To understand the
latter, imagine the ~ε1's as sums of columns of the matrix I := (id[l/2] | 0[(l/2)×(l/2)])T .
The iterations of the loop in line 2 are meant to add all combinations of z/2 columns of
that matrix to (Q1~εI1)[l]. Thus we can �rst compute the sums of (Q1~εI1)[l] with every single
column of I, then with every combination of 2 columns and so on always using the previously
computed sums, so that we only require a single binary operation per sum (as each column

of I only contains a single "1"). This involves exactly
(
l/2
1

)
+
(
l/2
2

)
+
(
l/2
3

)
+ . . .+

( l/2
z/2

)
=

l/2 +
( l/2
z/2

)
· (1 + δ(l/2, z/2)) bit �ips.

All in all we get:

time {searchBCD()[o3.5.1]} = 2l · (1 + δ(k/2, p/2))

(
k/2

p/2

)
+ min{1, z} · 2

(
k/2

p/2

)
(
l

2
+

(
l/2

z/2

)
· (1 + δ(l/2, z/2))

)
+

(k/2
p/2

)2( l/2
z/2

)2
2l

· p(n− k − l)

Note that the factor l is missing in the second summand in comparison to equation (3.27).
In practice however lines 4 and 10 of algorithm 3.6 could be implemented as two times z/2
bit �ips anyway (usually just one word operation), which makes the idea to apply this
optimization on ~ε1 and ~ε2 a rather theoretical construct, especially for those small z seen
in practice (actually we need to de�ne 1 + δ(l/2, 1) := 0 for z = 2).
The function δ(k, p) was de�ned in optimization 3.3.1. The memory consumption increases
by a constant factor.

Optimization 3.5.2 (Early abort). By applying optimization 3.4.3 to line 15 of algo-
rithm 3.6 we obtain (k/2

p/2

)2( l/2
z/2

)2
2l

· 2p(w − p− z + 1)

for the collision part of equation (3.27). Note that we can check the last n − k − l bits of
~εI∗ for weight w − p − z in line 16 of algorithm 3.6. The memory consumption with this
technique remains the same.

Optimization 3.5.3 (Birthday speedup). We can even apply optimization 3.4.4 to lines 1

and 7 of algorithm 3.6. Recall that we then have ~εI1 ,~εI2 ∈r Fk2. By de�ning N ′ :=
( l/2
z/2

)
N

we get:

time {searchBCD()[o3.5.3]} = Npl + min{1, z} ·N ′l +
N ′2

2l
· p(n− k − l)

mem {searchBCD()[o3.5.3]} = O
(
lN ′ + min{1, z} · l

2

(
l/2

z/2

)
+ kN

)

PRBCD[success = true][o3.5.3] =

(
k
p

)( l/2
z/2

)2(n−k−l
w−p−z

)(
n
w

) ·

1−

(
1−

(
p

p/2

)(
k

p/2

)−2
)N2
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Note that the last equation has N2 rather than N ′2 in the exponent, because it is the number
of combinations of ~εI1 and ~εI2 that is important for the success probability.

We can choose log2(N
( l/2
z/2

)
) ≤ l ≤ log2(N

( l/2
z/2

)
) + log2(n− k − l) and N ′ ≈

( p
p/2

)−1/2( k
p/2

)
as in optimization 3.4.4.
Additionally applying the birthday speedup to lines 2 and 8 is possible, but probably compli-
cated and not very rewarding. In particular a bad choice of ~εI1 ∈r Fk2 and ~εI2 ∈r Fk2 (e.g. one
where both vectors have 1's in common positions) in lines 1 and 7 of algorithm 3.6 (with
the birthday speedup applied) can never lead to the overall success of algorithm 3.6 for any
choice of ~ε1 and ~ε2, i.e. the probabilities cannot be assumed to be independent.

Remark 3.5.4. For large N it can be hard to compute the factor

[
1−

(
1−

( p
p/2

)(
k
p/2

)−2
)N2

]
in practice due to the large N2 in the exponent. We can use Bernoulli's inequality to obtain
an upper bound and the inequality 1 + x ≤ ex for x ∈ R to obtain a lower bound though:

1− e−( p
p/2)(

k
p/2)

−2
N2

≤

1−

(
1−

(
p

p/2

)(
k

p/2

)−2
)N2

 ≤ N2 ·
( p
p/2

)
(
k
p/2

)2
Note that this lower bound might be easier to compute, because 0 <

( p
p/2

)(
k
p/2

)−2
< 1.
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3.6 FS-ISD

Somewhere hidden between the lines of [26], a paper published by Finiasz and Sendrier
in 2009, lies an important observation that enables us to get rid of the size-l zero-block
of �gure 3.4 completely: First note that we can easily rewrite �gure 2.1 to respect the
parameter l from Stern's algorithm (cf. section 3.4), which results in �gure 3.6. Thereby

we de�ne the matrix L ∈ F(n−k)×l
2 as those l columns of the parity check matrix Ĥ, which

correspond to the entries of (~εI∗)[l]. By the vector ~εI∗ ∈ Fn−k−l2 we mean the last n− k− l
entries of the error vector ~εI∗ (i.e. ~εI∗ = prepend((~εI∗)[l],~εI∗) should hold). The columns

of the matrix S ∈ F(n−k)×(n−k−l)
2 correspond to these entries. The �rst l rows of S are all

zero; afterwards follow n−k− l rows that form the (n−k− l)-identity matrix id. A parity
check matrix Ĥ that looks as in �gure 3.6 is said to be in quasi-systematic form.


O

Q L id





~εI

(~εI∗)[l]

~εI∗

= ~ς

︸ ︷︷ ︸
S

Figure 3.6: Structure of Ĥ~ε = ~ς with id := id[n−k−l], O := 0[l×(n−k−l)], Q ∈ F(n−k)×k
2 ,

L ∈ F(n−k)×l
2 , S ∈ F(n−k)×(n−k−l)

2 , ~εI ∈ Fk2, (~εI∗)[l] ∈ Fl2, ~εI∗ ∈ Fn−k−l2 , Ĥ ∈ F(n−k)×n
2 ,

~ε ∈ Fn2 , ~ς ∈ Fn−k2

Let us de�ne Q′ := (Q | L) and ~εI := prepend(~εI , (~εI∗)[l]) ∈ Fk+l
2 . Then we have

Q′~εI + S~εI∗ = ~ς (3.30)

Now the basic idea is to guess ~εI ∈ Fk+l
2 instead of ~εI in a meet-in-the-middle approach and

then compute ~εI∗ from it. Guessing ~εI implies a guess for (~εI∗)[l], so that we do not need
to do this explicitly anymore (as e.g. with the Ball-Collision algorithm from section 3.5).
Note that S~εI∗ is just the vector ~εI∗ with l zeroes padded at the top (i.e. S~εI∗ = prepend(~0,~εI∗),
~0 ∈ Fl2), so that

(Q′~εI)[l] + ~ς[l] = ~0 (3.31)

holds for any (~εI∗)[l], whereas for Stern's algorithm the equivalent equation (3.18) did only

hold for (~εI∗)[l] = ~0 (simply because (~εI∗)[l] is part of ~εI).
Similar to �gure 3.3 we can then once again divide Q′ into two halves Q′1 and Q′2 as well
as ~εI into two halves ~εI1 and ~εI2 to search for collisions and hope for a distribution of the
real error vector ~ε as in �gure 3.7. Algorithm 3.7 immediately follows. The combination
of algorithm 3.1 with algorithm 3.7 is called "Finiasz-Sendrier Information Set Decoding"
(or "FS-ISD" for short) by May et al. in [20, 21].

←−−−−−−−− k −−−−−−−−→ ←−−−−−−−−− n− k −−−−−−−−−→
←− l −→ ←−−−− n− k − l −−−−→

FS-ISD p/2 p/2 w − p

Figure 3.7: weight distribution of ~ε as demanded by algorithm 3.7
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Remark 3.6.1. The original algorithm from table 2 of [26] also contains the idea of using
the birthday speedup, which is not applied in algorithm 3.7, but introduced in optimiza-
tion 3.6.3. So �gure 3.7 would be incorrect for the original algorithm.

Algorithm 3.7: searchFS()

Input: parity check matrix Ĥ = (Q | L | S) ∈ F(n−k)×n
2 , syndrome ~ς ∈ Fn−k2 ,

w = wt (~e), algorithmic parameter 0 ≤ p ≤ w, algorithmic parameter
0 ≤ l ≤ n− k − w + p

Output: success indicator (true/false), error vector ~ε ∈ Fn2
foreach ~εI1 ∈ Fd(k+l)/2e

2 ,wt(~εI1) = p
2 do L1[~εI1 ]← ~ς[l] + (Q′1~εI1)[l]1

foreach ~εI2 ∈ Fb(k+l)/2c
2 ,wt(~εI2) = p

2 do L2[~εI2 ]← (Q′2~εI2)[l]2

foreach ~εI1 ,~εI2 ,L1[~εI1 ] = L2[~εI2 ] do3

~εI ← prepend(~εI1 ,~εI2)4

S~εI∗ := ~ς +Q′~εI5

if wt(S~εI∗) = w − p then6

~εI∗ ← remove(S~εI∗ , l)7

~ε← prepend(~εI ,~εI∗)8

return (true,~ε)9

end10

end11

return (false,~0)12

It is important to see that there are two ways to work with the new matrix Q′ = (Q | L) ∈
F(n−k)×(k+l)

2 :

1. We can either do a partial Gaussian elimination to obtain the matrix S in �gure 3.6
only. Thus we can save some binary operations during the execution of randomize()
(cf. algorithm 3.1). Note however that still Q rather than Q′ de�nes the notion of
the information set I. This is the way chosen by Finiasz and Sendrier in [26].

2. Or we can do a complete Gaussian elimination to obtain the matrix (L | S) = id[n−k]

and exploit the fact that we know L to be in the form (id[l] | 0[(n−k−l)×l])T to
save binary operations during the computation of lines 2 and 5 of algorithm 3.7.
Obviously Q′ cannot be assumed to be uniform in that case, but only Q. However we
do not require the assumption of L being uniform; actually it is only used to estimate
the number of collisions in line 3 of algorithm 3.7 and in that case remark 3.6.2 applies.

We decided to choose the latter way for our analysis of the algorithm for two reasons: First,
we do not need to adapt our model of the randomize() function from section 3.1 to do a
partial Gaussian elimination only. Second, the analysis in section 3.4 indicates that the
Gaussian elimination process is probably asymptotically irrelevant anyway. Saving binary
operations within algorithm 3.7 seems to be more signi�cant. Moreover it can be left to the
Gaussian optimizations (e.g. optimization 3.1.3) to reduce the complexity of the Gaussian
elimination process.
So we do not compute line 5 of algorithm 3.7 naively, but rather use the fact that L =
(id[l] | 0[(n−k−l)×l])T and get

Q′~εI = (Q | L) · prepend
(
~εI , (~εI∗)[l]

)
= Q~εI + L(~εI∗)[l]

= Q~εI + prepend
(
(~εI∗)[l],~0

)
, ~0 ∈ Fn−k−l2 (3.32)
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Expecting that (~εI∗)[l] contains a fraction of l
k+l of the overall number of 1's within ~εI ∈

Fk+l
2 we need to select and sum up at about (1 − l

k+l )p columns of Q in line 5 of algo-
rithm 3.7. As line 7 indicates we do not really need to compute the �rst l bits of S~εI∗ in
line 5, so that we can rather compute ~εI∗ = remove(~ς + Q′~εI , l) = remove(~ς + Q~εI , l) in

line 5. To do so we require roughly kp
k+l (n− k − l) bit operations per computation.

Since Q′2 also contains the matrix L, we get for line 2 of algorithm 3.7:

Q′2~εI2 = (Q′′2 | L) · prepend
(
~γ, (~εI∗)[l]

)
= Q′′2~γ + L(~εI∗)[l]

= Q′′2~γ + prepend
(
(~εI∗)[l],~0

)
, ~0 ∈ Fn−k−l2 (3.33)

⇒ (Q′2~εI2)[l] = (Q′′2~γ)[l] + (~εI∗)[l] (3.34)

Thereby the matrix Q′′2 ∈ F(n−k)×(k−l)/2
2 and the vector ~γ ∈ F(k−l)/2

2 (assuming k and l
are even integers) are implicitly de�ned by the equations above. Since we iterate over
all ~εI2 in line 2 of algorithm 3.7, the vector (~εI∗)[l] is known to have an average weight of

ψ :=
∑p/2

j=0

((k−l)/2
p/2−j

)(
l
j

)
· j ·
((k+l)/2

p/2

)−1
there, so that the operation (Q′′2~γ)[l] means a cost of

at about (p2 − ψ)l binary operations. In contrast the computation of (Q′1~εI1)[l] in line 1 of
algorithm 3.7 does not bene�t from our knowledge of L, i.e. we obtain the standard number
of p2 l binary operations per computation. All in all we get the summand p

2 l
((k+l)/2

p/2

)
for line 1

of algorithm 3.7, the summand (p2−ψ)l
((k+l)/2

p/2

)
for line 2 and (1− l

k+l )p(n−k−l)
((k+l)/2

p/2

)2
·

2−l for line 5. These observations result in equation (3.35). If we assume ψ ≈ p
2 ·

2l
k+l , the

overall factor that we gain from using the equations 3.32 and 3.33 is roughly k
k+l .

Remark 3.6.2. We still use the term
((k+l)/2

p/2

)2
2−l to model the expected number of col-

lisions in line 3, even though Q′2 is not entirely uniform. We can understand the labels
(Q′2~εI2)[l] = (Q′′2~γ)[l] + (~εI∗)[l] (cf. equation (3.34)) of L2 as uniform list entries (Q′′2~γ)[l]

expanded by vectors (~εI∗)[l] of a certain �xed weight τ = p/2− wt (~γ). Whenever we �nd a
collision in line 3 of algorithm 3.7 for �xed ~εI1 , γ and (~εI∗)[l] with wt((~εI∗)[l]) = τ , we can
immediately ignore all other possibilities for (~εI∗)[l] with weight τ , which implies a corre-
lation of the list entries with regard to the (~εI∗)[l]'s. However similar to remark 3.5.2 this
neither a�ects the success probability of the algorithm nor does it a�ect the expected number
of collisions in line 3, but only seems to have a small e�ect on the variance (cf. appendix D).

time {searchFS()} = (p− ψ)l

(
(k + l)/2

p/2

)
+

k

k + l
·

((k+l)/2
p/2

)2
2l

p(n− k − l) (3.35)

mem {searchFS()} = O
(

1

2
(3l + k)

(
(k + l)/2

p/2

))
(3.36)

PRFS [success = true] =

((k+l)/2
p/2

)2(n−k−l
w−p

)(
n
w

) (3.37)

Regarding the memory consumption we need to store at least the list L1 (cf. remark 3.4.1),

i.e. every ~εI1 ∈ Fd(k+l)/2e
2 as well as the l-bit results from the matrix operation in line 1

of algorithm 3.7. As we iterate over all of the
((k+l)/2

p/2

)
possibilities for ~εI1 and ~εI2 , equa-

tion (3.36) immediately follows. Equation (3.37) can be obtained from looking at �gure 3.6
as usual. Once again note that a uniform choice of the information set I (i.e. a uniform
choice of Q) is su�cient to ensure the randomness of the whole error vector ~ε, which is
required to de�ne the success probability as in equation (3.37).

It is once again reasonable to choose log2

(((k+l)/2
p/2

))
≤ l ≤ log2

(((k+l)/2
p/2

))
+log2(n−k− l)
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(note that the lower and upper bound are also functions of l). The parameter p can be
chosen as in Stern's algorithm or slightly larger in practice to accommodate the additional
l-window in �gure 3.6.
It is remarkable that May, Meurer and Thomae prove in [20] that FS-ISD is asymptoti-
cally at least as e�cient as the Ball-Collision Decoding algorithm from section 3.5. Con-
cretely they state that the cost of Ball-Collision Decoding with the parameters (p′, l, z)
is asymptotically always equivalent or larger than the cost of FS-ISD with the parameter
set (p = p′ + z, l). Strangely enough, Finiasz and Sendrier did not see the potential of
their algorithm in [26]. Nevertheless Bernstein, Lange and Peters claim in [19]7 that Ball-
Collision Decoding is superior to FS-ISD by a polynomial factor. We will test this claim in
section 4. It would additionally imply that both algorithms are asymptotically equivalent.
This is also indicated by the (asymptotic) rough bound of 20.05559n found in [20], which is
the same for both Ball-Collision Decoding and FS-ISD.

Optimizations

Since the algorithm is pretty much the same as Stern's algorithm with di�erent dimensions,
we can directly apply the optimizations from section 3.4:

Optimization 3.6.1 (Reusing additions of the l-bit vectors). We can use this optimiza-
tion for both line 1 and line 2 of algorithm 3.7. Note that we employ this technique for the

whole matrix Q′2 ∈ F(n−k)×(k+l)/2
2 instead of for Q′′2 ∈ F(n−k)×(k−l)/2

2 only, but still retain
the advantage implied by our observation from equation (3.33), because every column se-
lected from L implies a 1-bit addition instead of a l-bit addition � this is also true whilst
precomputing the column sums. Hence we get

time {searchFS()[o3.6.1]} =

(
1 + δ

(
k + l

2
,
p

2

))(
1− ψ

p

)
2l

(
(k + l)/2

p/2

)
+
k
((k+l)/2

p/2

)2
(k + l)2l

p(n−k−l)

The memory consumption increases by a constant factor.
The original technique and the function δ(k, p) are described in optimization 3.3.1.

Optimization 3.6.2 (Early abort). The early abort strategy from optimization 3.3.2 leads
to a runtime of

time {searchFS()[o3.6.2]} = (p− ψ)l

(
(k + l)/2

p/2

)
+

k

k + l
·

((k+l)/2
p/2

)2
2l

2p(w − p+ 1)

whilst the memory consumption remains the same.

Optimization 3.6.3 (Birthday speedup). We can also use the birthday speedup in lines 1
and 2 of algorithm 3.7. Recall that ~εI1 ,~εI2 are chosen uniformly at random in Fk+l

2 rather

than F(k+l)/2
2 in that context. All in all we get

time {searchFS()[o3.6.3]} = (p− ψ) · lN +
k

k + l
· N

2

2l
p(n− k − l)

mem {searchFS()[o3.6.3]} = O ((2l + k)N)

PRFS [success = true][o3.6.3] =

(
k+l
p

)(
n−k−l
w−p

)(
n
w

)
1−

(
1−

(
p

p/2

)(
k + l

p/2

)−2
)N2


Similar to optimization 3.4.4 a sensible choice for N would be N ≈

( p
p/2

)−1/2(k+l
p/2

)
. The

parameter l is probably best chosen in the range log2(N) ≤ l ≤ log2(N) + log2(n− k − l).

7The claim was added to the version from March 2011.
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3.7 BJMM

In 2012 Becker, Joux, May and Meurer presented an information set decoding algorithm
that uses several new ideas in [21]. They decided to use the Finiasz-Sendrier algorithm
and its ideas (cf. �gure 3.6) as a starting point for their improvements. Instead of trying
to optimize the whole algorithm they concentrated on solving the underlying problem of
only the �rst two lines of algorithm 3.7, i.e. that of �nding l-bit collisions, more e�ciently.
To be precise, the problem can be de�ned as

De�nition 3.7.1 (Submatrix Matching Problem). Given a uniform matrix Q′l ∈r F
l×(k+l)
2

and a target vector ~ς[l] ∈ Fl2, the submatrix matching problem (SMP) consists in �nding a

vector ~εI ∈ Fk+l
2 with weight wt(~εI) = p, so that Q′l~εI = ~ς[l].

Remark 3.7.1. The submatrix matching problem is a binary vectorial version of the subset
sum/knapsack problem (see [32]).

If we de�ne Q′l as the �rst l rows of the matrix Q′ (cf. section 3.6), the problem is equiv-
alent to solving equation (3.31). Obviously every improvement in solving this problem
automatically improves algorithm 3.7. Recall that the collision search was originally intro-
duced by Stern to have more control over the number of times where the costly operation
~εI∗ = ~ς+Q~εI (for example in line 2 of algorithm 3.3) needs to be computed. Therefore the
submatrix matching problem is just an instance of the computational syndrome decoding
(CSD) problem introduced in section 2.2.3 with smaller parameters. However a solution
of the SMP is not directly a solution of the CSD problem.
Nevertheless the SMP is a highly divisible problem: For example the FS-ISD algorithm
divides the problem into two halves by trying to �nd vectors ~εI1 and ~εI2 with wt(~εI1) =
wt(~εI2) = p/2. In contrast to Lee-Brickell's algorithm this can be understood as a divide
& conquer approach of depth 1, which lowers the computational complexity, but comes
at the cost of imposing an additional constraint onto the weight distribution of the error
vector ~ε (weight p/2 in two times (k+ l)/2 positions instead of just weight p in k positions
as with Lee-Brickell's algorithm).
Becker, Joux, May and Meurer even use a divide & conquer approach of depth 3 (8) re-
sulting in constraints on the weight distribution of the error vector ~ε similar to those in
�gure 3.8.

←−−−− k −−−−→ ←−−−−−−−−− n− k −−−−−−−−−→
←− l −→ ←−−−− n− k − l −−−−→

BJMM w − p

Figure 3.8: rough sketch of the weight distribution of ~ε as demanded by algorithm 3.9

However they do not split the information set into entirely disjoint sets, but allow the sets
to intersect, i.e. they use the equation ~εI = ~εI1 +~εI2 and allow for I1∩I2 6= ∅. This is some-
what similar to the birthday speedup (cf. optimization 3.4.4). Recall from remark 3.4.4
that it seems contradictory to allow for I1 ∩ I2 6= ∅, but nevertheless try to �nd a vector ~εI
with wt(~εI) = p consisting of two other vectors each required to have weight p/2 and thus
requiring I1 ∩ I2 = ∅ to succeed. Therefore the BJMM-algorithm allows an error vector ~εI
to split into ~εI1 +~εI2 with wt(~εI1) = wt(~εI2) = p/2 + ∆1 := p1, where ∆1 is an algorithmic
parameter. The basic idea is to accept a certain additional weight ∆1 on the vectors ~εI1
and ~εI2 in the hope that exactly these ∆1 additional 1's cancel out in the sum ~εI1 + ~εI2

8According to their tests, this particular depth seems optimal in combination with the BJMM-algorithm.
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due to the simple equation 1 + 1 = 0 in F2 (which explains the title of [21]). This idea was
inspired by the paper [32].
We can do the same for both ~εI1 and ~εI2 , i.e. write them as sums of two vectors with
weight p2 := p1/2 + ∆2, and so on (until we reach a depth of 3). All in all we hope
that the real error vector ~ε can be represented as a sum of all of these vectors. Note
that the additional weights ∆1 and ∆2 provide us with additional possibilities to repre-
sent the vectors ~εI , ~εI1 and ~εI2 . That is also why �gure 3.8 does not contain any speci�c
weight speci�cations for the real ~εI and just indicates the split of ~εI into a sum of 8 vectors.

. . .

Disjoint base lists Bi,1 and Bi,2 for i = 1, . . . , 4Layer 3

Layer 2

Layer 1

Layer 0

weight p3 = p2
2

p2 = p1
2 + ∆2

p1 = p
2 + ∆1

p

./ ./

./

r2 r2 r2 r2

r1 r1

lL

L(1)
1 L(1)

2

L(2)
1 L(2)

2 L(2)
3 L(2)

4

Figure 3.9: Illustration of the divide & conquer structure of algorithm 3.9; the original
picture appeared in [21].

Figure 3.9 illustrates the overall idea, which we explain from bottom to top as an act
of list/problem splitting, although the actual algorithm works from top to bottom and
happens to merge the lists: On layer 0 we have our usual list of candidates for the real ~εI
with weight p, that can be written as a sum of the two vectors ~εI1 and ~εI2 both with
weight p1 = p/2 + ∆1 and that happen to match the syndrome on its �rst l entries
((Q′~εI)[l] + ~ς[l] = ~0⇔ ~ς[l] + (Q′~εI1)[l] = (Q′~εI2)[l]). We can de�ne

L :=
{
~εI ∈ Fk+l

2 | wt(~εI) = p and (Q′~εI)[l] + ~ς[l] = ~0
}

(3.38)

We split this list into two lists L(1)
1 and L(2)

2 containing candidates for ~εI1 and ~εI2 . It
is possible to write both ~εI1 and ~εI2 as sums of two more vectors each, let's say ~εI1 =

~e
(2)
1 + ~e

(2)
2 ∈ Fk+l

2 and ~εI2 = ~e
(2)
3 + ~e

(2)
4 ∈ Fk+l

2 . The superscript index is meant to indicate

the layer. These vectors ~e
(2)
i all have weight wt(~e

(2)
i ) = p2 := p1/2 + ∆2 using the same

representation trick as before. To keep the number of elements in L(1)
1 and L(1)

2 relatively
small, it is additionally required that candidates for ~εI1 and ~εI2 from the lists of layer 2

match some pseudo-syndromes ~u
(1)
1 ∈ Fr12 and ~u

(1)
2 ∈ Fr12 on their �rst r1 ≤ l entries. Thus

we get

L(1)
i :=

{
~εIi ∈ Fk+l

2 | wt(~εIi) = p1 and (Q′~εIi)[r1] + ~u
(1)
i = ~0

}
for i = 1, 2 (3.39)
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However May et al. choose the pseudo-syndromes, so that (Q′~εI)[r1] = (Q′(~εI1 +~εI2))[r1]
!

=

~ς[r1] already holds for layer 0. To be more precise, they choose ~u
(1)
1 ∈r Fr12 and set ~u

(1)
2 :=

~ς[r1] + ~u
(1)
1 to make that equation hold. Note that ~u

(1)
1 is chosen uniformly at random, so

that layer 1 can be assumed to be independent of layer 0 with regard to the choice of the
"syndrome".
Exactly the same is done on layer 2, just with a di�erent parameter r2 ≤ r1 ≤ l:

L(2)
i :=

{
~e

(2)
i ∈ Fk+l

2 | wt(~e(2)
i ) = p2 and (Q′~e

(2)
i )[r2] + ~u

(2)
i = ~0

}
for i = 1, . . . , 4 (3.40)

This time we choose ~u
(2)
1 , ~u

(2)
3 ∈r Fr22 and set ~u

(2)
2j := (~u

(1)
j )[r2] + ~u

(2)
2j−1 for j = 1, 2, which

guarantees that (Q′~εIi)[r2] = (Q′(~e
(2)
2i−1 + ~e

(2)
2i ))[r2]

!
= (~u

(1)
i )[r2] for i = 1, 2 already holds for

layer 1.
The question how to create those lists on layer 2 remains: May et al. exemplary explain how

to create the list L(2)
1 . The other lists can be constructed analogously (cf. algorithm 3.9).

They once again write the vector ~e
(2)
1 as ~e

(2)
1 = ~y + ~z, but this time they demand that the

positions of the 1's in ~y and ~z do not overlap. Recall that this is the classical approach
already seen in Stern's algorithm (cf. section 3.4). More precisely they choose an index
set P1,1 ⊂ {1, 2, . . . , k + l} at random with |P1,1| = d(k + l)/2e, that indexes the positions
where ~y may distribute p3 = p2/2 many 1's. The remaining entries of ~y are demanded
to be zero. Similarly P1,2 := {1, . . . , k + l} \ P1,1 indexes the positions where ~z may
distribute p3 many 1's. Then they simply iterate over all possible vectors ~y and ~z exposing
the demanded weight distribution in a brute-force approach and add those vectors to the

initial base lists B1,1 and B1,2, which are used to create the list L(2)
1 .

Note that the index sets are chosen uniformly at random this time9 to ensure that the

choice of L(2)
1 is independent of the choice of L(2)

2 , which would not be the case if both lists
were created from the same base lists.
It is also very important to see that not every vector ~e

(2)
1 can be written as ~e

(2)
1 = ~y + ~z

with one half of its 1′s at positions indexed by the uniformly chosen index set P1,1 and
the other half at positions indexed by the disjoint set P1,2 = {1, 2, . . . , k + l} \ P1,1. In

fact the probability that such a split is possible for an element ~l1 ∈ L(2)
1 as de�ned in

equation (3.40) is

Ps :=

((k+l)/2
p2/2

)2(
k+l
p2

) (3.41)

Remark 3.7.2. Therefore the list de�nitions in equation (3.38), (3.39) and (3.40) are not
entirely precise: Since we require list entries on layer 2 (cf. �gure 3.9) to have a certain
structure (it must be possible to split them into elements of the base lists), this structure
must already exist on the other layers (layer 1 and 0). So basically the list de�nitions would
have to include the additional requirement that the split on layer 2 is possible. As they are
de�ned in equation (3.38), (3.39) and (3.40) they give a superset of the real lists occurring
in algorithm 3.9; their sizes can be used as upper bounds on the list sizes occurring in
algorithm 3.9. We prefer to use the more exact equations though.
Also note that the splits on layer 1 and layer 2 are always possible.

Since the choice of L(2)
1 is independent of the choice of L(2)

2 , we can use (Ps)2 to model the

probability that both an element ~l1 ∈ L(2)
1 and an element ~l2 ∈ L(2)

2 split as desired (if we
don't use the adapted list de�nition from remark 3.7.2).

9In Stern's algorithm we �xed the index sets as I1 := {1, . . . , d k
2
e} and I2 := {d k

2
e+ 1, . . . , k}.
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As already mentioned, the actual BJMM-algorithm starts the other way around with the
8 base lists Bi,1 and Bi,2 for i = 1, . . . , 4 and merges Bi,1 and Bi,2 to reach layer 2, then
merges the lists from layer 2 to reach layer 1 and so on. This is indicated by the ./ symbol
in �gure 3.9. Thereby algorithm 3.8 realizes the merge-operation. Basically the function
�ndColl() just encapsulates the search for collisions between the entries of two lists. In
line 5 of algorithm 3.8 we check whether the collisions have the desired weight for the next
layer and were not found before (duplicates may occur, if ~l1 and ~l2 are not required to
have their 1's in disjoint positions). For example we can rewrite the FS-ISD algorithm to
use the �ndColl() function resulting in a searchFS() function as displayed in algorithm C.1
in appendix C. In contrast the function searchBJMM(), which is the essential part of the
BJMM-algorithm as part of the isd()-algorithm from section 3.1, is provided in pseudocode-
notation as algorithm 3.9.

Algorithm 3.8: �ndColl(L1,L2, Q
′, ~u, r, p∗)

Input: lists L1 and L2 with entries from Fk+l
2 , matrix Q′ ∈ F(n−k)×(k+l)

2 ,
vector ~u ∈ Fr2, integer 0 ≤ r ≤ n− k, integer 0 ≤ p∗ ≤ w

Output: list L containing all entries ~l1 ∈ L1, ~l2 ∈ L2 with ~u[r] + (Q′~l1)[r] = (Q′~l2)[r]

foreach ~l1 ∈ L1 do L′1[~l1]← ~u[r] + (Q′~l1)[r]1

foreach ~l2 ∈ L2 do L′2[~l2]← (Q′~l2)[r]2

foreach ~l1,~l2,L′1[~l1] = L′2[~l2] do3

~l := ~l1 +~l24

if wt(~l) = p∗ and ~l 6∈ L then L ← ~l5

end6

return L7

In order to properly estimate the runtime of algorithm 3.9, we �rst need to analyse the
runtime of the function �ndColl() from algorithm 3.8. Assuming that all list elements
share a common weight a := wt(~l1) = wt(~l2) ∀ ~l1 ∈ L1,~l2 ∈ L2 (L1 and L2 are the input
lists of �ndColl()), we know that lines 1 and 2 of algorithm 3.8 mean a selection and r-bit
vector addition of a columns of Q′ for each of the elements of both lists. This should
explain the �rst part of equation (3.42). Keep in mind that a 6= p∗. Also note that we
do not use the trick from section 3.6 to do a full Gaussian elimination in algorithm 3.1
and use the fact that we know the L-matrix in Q′ = (Q | L). This time we rather do a
partial Gaussian elimination in algorithm 3.1 only, because we are unsure whether various
theorems from [21] still hold, if Q′ is not entirely uniform. The rather small advantage of
doing a partial Gaussian elimination is quanti�ed at a later point in this section.

time {findColl()} = (|L1|+ |L2|) · ar + C · (k + l) + tsort(|L1|) + tsort(|L2|) (3.42)

mem {findColl()} = min{|L1|, |L2|} · (r + k + l) + |L| · (k + l) (3.43)

We use C to denote the number of collisions in line 3 of algorithm 3.8, because we do not
know whether the lists L1 and L2 are entirely uniform (indeed, this is not the case for the
BJMM-algorithm due to the way the lists are constructed).
For each collision we need to do a k+l-bit addition in line 4 (especially if ~l1 and ~l2 intersect
in some positions). We neglect the weight check as well as the duplicate check (~l 6∈ L) in
line 5. Neglecting the complexity of the duplicate check is reasonable, if we replace the
list L with a hash map that only allows exactly one entry in each of its buckets10.

10The size of the hash map needs to be chosen large enough. If we should still fear unwanted hash
collisions within the map, we could also allow for multiple entries in each bucket and check whether the
entries are really duplicates whenever a hash collision occurs.
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Remark 3.7.3. For both L′1 and L′2 we propose to use (hash) maps with 2r buckets that
allow for multiple entries within each of their buckets similar to remark 3.4.2; actually it
is su�cient to just use one hash map and check for collisions on the �y. Thereby it is
desirable to ensure that the number of entries within each bucket does not grow too large in
order not to loose the advantage of using (hash) maps. Basically we desire an equation such

as min{|L1|,|L2|}
2r = O(1) to hold. Unfortunately this imposes relatively strict constraints on

the choices of the parameters ∆1 (⇒ r1) and ∆2 (⇒ r2) for algorithm 3.9; it is unclear,
whether exactly those choices are optimal.
Therefore May et al. propose a di�erent way to implement algorithm 3.8 (cf. [21, section 3]),
which does not introduce any additional constraints, allows for a more proper analysis and
is probably more memory-e�cient, but also happens to perform worse than this proposal by
at least a logarithmic factor: Basically it lexicographically sorts the input lists according to
the labels ~u[r] + (Q′~l1)[r] and (Q′~l2)[r] and uses the sorted lists to �nd collisions in just one
iteration over all elements of the lists. It is well known that sorting an input lists L1 can
be achieved in O(|L1| log2(|L1|)) iterations. During each iteration we need to compare at
least r bits resulting in an overall complexity of O(|L1| log2(|L1|) · r).
To model the possibility that using hash maps results in suboptimal parameters we introduce
two summands of the following kind into equation (3.42):

tsort(|L1|) :=

{
0 if min{|L1|,|L2|}

2r = O(1) (hash maps usable)

O(|L1| log2(|L1|) · r) else

(3.44)

We propose to use min{|L1|,|L2|}
2r < log2(min{|L1|, |L2|}) as a more practical condition to

check, whether or not hash maps are usable.
Since it is not that important, we do not adapt the memory consumption modeled by equa-
tion (3.43).

All in all we obtain equation (3.42). With regard to the memory consumption of �ndColl()
we only model the additional memory required by executing �ndColl() (i.e. we do not
include the memory required by the input parameters): The lists L′1 and L′2 store r-bit
values at k + l-bit indices and the returned list L contains |L|-many k + l-bit entries. We
only need to store one of the lists L′1 and L′2 (the smaller one) in practice and can check
for collisions with entries of the other list directly after computing the r-bit label11. This
results in equation (3.43). Note that the size |L| remains unknown, if we cannot specify
how many collisions passed the weight and duplicate check in line 5 of algorithm 3.8. It
is worth mentioning that at the end of every execution of �ndColl() we can not only free
the memory used by the lists L′1 and L′2, but also the memory used by the input lists L1

and L2 as they are not required anymore in algorithm 3.9.

Let us de�ne |L(j)| := maxi{|L(j)
i |} as well as |B| := |Bi,1| = |Bi,2| =

(
(k+l)/2
p3

)
(for an

even k + l) and assume that the lists of algorithm 3.9 are balanced on each layer. Then
we can write equation (3.42) and equation (3.43) more concretely in combination with
algorithm 3.9, where �ndColl() always gets two lists of size |L(j+1)| as input and outputs
a list of size |L(j)|. In that case we have

time {findColl()} = 2|L(j+1)|pj+1(rj − rj+1) +
|L(j+1)|2

2rj−rj+1
(k + l) + 2tsort(|L(j+1)|) (3.45)

mem {findColl()} = |L(j+1)| · (rj − rj+1 + k + l) + |L(j)| · (k + l) (3.46)

for j = 0, 1, 2 (with |L(3)| := |B|, |L(0)| := |L|, r3 := 0, r0 := l)

11This only works with hash maps, i.e. when no list sorting is required.
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Algorithm 3.9: searchBJMM()

Input: parity check matrix Ĥ = (Q | L | S) ∈ F(n−k)×n
2 , syndrome ~ς ∈ Fn−k2 ,

w = wt (~e) ≤ k + l, algorithmic parameter 0 ≤ p ≤ w, algorithmic
parameters 0 ≤ r2 ≤ r1 ≤ l ≤ n− k − w + p, algorithmic
parameters 0 ≤ ∆1 ≤ k + l − p, 0 ≤ ∆2 ≤ k + l − p1

Output: success indicator (true/false), error vector ~ε ∈ Fn2
/* choose and set parameters */
p1 := p/2 + ∆1; p2 := p1/2 + ∆2; p3 = p2/21

choose ~u
(1)
1 ∈r Fr122

~u
(1)
2 := ~ς[r1] + ~u

(1)
13

choose ~u
(2)
1 , ~u

(2)
3 ∈r Fr224

~u
(2)
2 := (~u

(1)
1 )[r2] + ~u

(2)
1 ; ~u

(2)
4 := (~u

(1)
2 )[r2] + ~u

(2)
35

/* create base lists */
for i = 1 . . . 4 do6

choose the index set Pi,1 ⊂ {1, . . . , k + l}, |Pi,1| = d(k + l)/2e at random7

Pi,2 := {1, 2, . . . , k + l} \ Pi,18

Bi,1 := {~y ∈ Fk+l
2 | wt (~y) = p3, ~yPi,2 = ~0}9

Bi,2 := {~z ∈ Fk+l
2 | wt (~z) = p3, ~zPi,1 = ~0}10

end11

/* �nd collisions */

for i = 1 . . . 4 do L(2)
i ← findColl (Bi,1,Bi,2, Q′, ~u(2)

i , r2, p2)12

for i = 1 . . . 2 do L(1)
i ← findColl (L(2)

2i−1,L
(2)
2i , Q

′, ~u
(1)
i , r1, p1)13

L ← findColl (L(1)
1 ,L(1)

2 , Q′, ~ς[l], l, p)14

/* use collisions */
foreach ~εI ∈ L do15

S~εI∗ := ~ς +Q′~εI16

if wt(S~εI∗) = w − p then17

~εI∗ ← remove(S~εI∗ , l)18

~ε← prepend(~εI ,~εI∗)19

return (true,~ε)20

end21

end22

return (false,~0)23

There are several subtle di�erences to the previously mentioned equations: The expected
number of collisions C between lists on layer j + 1 is given by C = |L(j+1)|2/2rj−rj+1 ,
because the entries from the lists of layer j+1 already collide on rj+1 bits by construction,
i.e. only rj − rj+1 bits are signi�cant for the number of collisions. Similarly we only need
to compute the labels for these signi�cant rj − rj+1 bits in line 1 and 2 of algorithm 3.8.
Thereby we would like to stress once more that the expected size of the output list |L(j)|
is not identical to the expected number of collisions between the two lists of layer j + 1,
because collisions have to pass the weight and duplicate check in line 5 of algorithm 3.8.
To estimate the expected size of the output list |L(j)|, we can rather observe from the list
de�nitions (cf. equations (3.38), (3.39) and (3.40)) in combination with remark 3.7.2 that
equation (3.47) holds for p0 := p and f(j) = 2|2−j|. The factor (Ps)f(j) accommodates the

fact that only a fraction of Ps many entries of the lists L(2)
i as de�ned in equation (3.40)
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can be expected to split into the base lists Bi,1 and Bi,2. On layer 1 this is only a fraction
of (Ps)2 entries and on layer 0 a fraction of (Ps)4 entries.

|L(j)| =
(
k + l

pj

)
︸ ︷︷ ︸

bj

· 2−rj · (Ps)f(j) for j = 0, 1, 2 (3.47)

|L(3)| = |B| =
(

(k + l)/2

p3

)
Let us de�ne bj :=

(
k+l
pj

)
and assume that equation (3.47) is always correct apart from

constant factors. If equation (3.47) does not hold, we could actually stop the computation
of algorithm 3.9 and just restart algorithm 3.9 in the hope that we choose "better" vec-

tors ~u
(j)
i this time. May et al. actually prove in [21, appendix A] that this strategy works

for almost all randomly chosen matrices Q′ at the cost of a constant runtime factor.
To estimate the runtime and memory consumption of algorithm 3.9 we refer to lemma 3.7.1,
lemma 3.7.2 and equation (3.51). All in all we obtain the following set of equations:

time {searchBJMM()} = 8|B| · p3r2 +
4|B|2

2r2
(k + l + p2(r1 − r2))

+
2

2r1

(
|B|4

2r2
(k + l) + b1(Ps)2p1(l − r1)

)
+

(Ps)4

2l

(
b21
2r1

(k + l) + b0p(n− k − l)
)

+
3∑
i=1

2i · tsort(|L(i)|) (3.48)

mem {searchBJMM()} = M(3) +O
(

max

{
|B| · (r2 + k + l),

|B|2

2r2
· (r1 − r2 + k + l),

b1(Ps)2

2r1
· (2l − r1 + k)

})
(3.49)

PRBJMM [success = true] =

(
k+l
p

)(
n−k−l
w−p

)(
n
w

) · (Ps)4 · c(3) (3.50)

Lemma 3.7.1. Under the following assumptions equation (3.48) models the number of
binary operations required by algorithm 3.9 apart from constant factors:

1. Only the lines 12,13,14 and 16 are relevant for the overall runtime of algorithm 3.9.

2. Apart from constant factors, equation (3.47) holds.

Proof. We use the notation ti to denote the (expected) number of binary operations re-
quired in line i.
Then we simply use equation (3.45) in combination with equation (3.47) to get

t12 = 4 ·
(

2|B| · p3r2 +
|B|2

2r2
(k + l) + 2tsort(|B|)

)
t13 = 2 ·

(
2|L(2)| · p2(r1 − r2) +

|L(2)|2

2r1−r2
(k + l) + 2tsort(|L(2)|)

)

= 2 ·
(

2
b2Ps
2r2
· p2(r1 − r2) +

(b2Ps)2

2r1+r2
(k + l) + 2tsort(|L(2)|)

)
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= 2 ·
(

2
|B|2

2r2
· p2(r1 − r2) +

|B|4

2r1+r2
(k + l) + 2tsort(|L(2)|)

)
t14 = 2|L(1)| · p1(l − r1) +

|L(1)|2

2l−r1
· (k + l) + 2tsort(|L(1)|)

= 2
b1(Ps)2

2r1
· p1(l − r1) +

b21(Ps)4

2l+r1
· (k + l) + 2tsort(|L(1)|)

t16 = p(n− k − l) · |L| = p(n− k − l) · b0 · 2−l · (Ps)4

Note that we do not need to compute the �rst l bits in line 16, because we discard them
in line 18 anyway.
Equation (3.48) follows as t12 + t13 + t14 + t16.

Lemma 3.7.2. Under the following assumptions equation (3.49) models the memory con-
sumption of algorithm 3.9:

1. Only the lines 9,10,12,13,14 are relevant for the memory required by algorithm 3.9.

2. Apart from constant factors, equation (3.47) holds.

Proof. To save memory, the following strategy can be applied: Instead of executing lines 12

to 14 in the order as displayed in algorithm 3.9, we can �rst compute the lists L(2)
1 and L(2)

2

from their base lists, free the memory used by the base lists after computing each of them,

then merge those two lists to L(1)
1 , free the memory occupied by L(2)

1 and L(2)
2 and do the

same for the right half of the tree in �gure 3.9. This way there are always at most two lists
of the same layer and one list per layer below them (except for layer 0) in memory at the
same time. Assuming that there are φ + 1 layers (φ layers above layer 0), the maximum
memory consumption imposed by saving lists at any point in time is thus given by

M(φ) := O

 max
i=0,...,φ

min
{

2i, 2
}
· |L(i)|+

i−1∑
j=1

|L(j)|

 · (k + l)

 (3.51)

The factor min
{

2i, 2
}
is meant to cope with the possibility that the list L might consume

more memory than any other combination.
In contrast the naive way as presented in algorithm 3.9 implies a maximum memory con-
sumption of Mn(φ) := O

(
maxi=0,...,φ

{
2i · |L(i)|

}
· (k + l)

)
from storing the lists, which is

clearly suboptimal to M(φ).
We still need to add the memory used in lines 12, 13 and 14 of algorithm 3.9 that can be
freed after a single execution of �ndColl(), namely the memory occupied by the lists L′1
and L′2 during each execution of algorithm 3.8. We use the notation mi to denote the
additional memory required and discarded after a single call of �ndColl() in line i.
By combining the �rst part of equation (3.46) with equation (3.47) we obtain:

m12 = O (|B| · (r2 + k + l))

m13 = O
(
|L(2)| · (r1 − r2 + k + l)

)
= O

(
|B|2

2r2
· (r1 − r2 + k + l)

)
m14 = O

(
|L(1)| · (l − r1 + k + l)

)
= O

(
b1(Ps)2

2r1
· (2l − r1 + k)

)
Equation (3.49) then follows as M(3) + max{m12,m13,m14}, because the consumption
implied by m12, m13 and m14 never occurs at the same time.
Regarding line 14 we could also decide not to store the list L, but rather use collisions
directly in line 15 �. at the cost of omitting the duplicate check in line 5 of algorithm 3.8.

55



To understand equation (3.50), it is necessary to consider the criteria that make algo-
rithm 3.9 succeed:

1. We require that the real error vector ~ε has a weight of p on its �rst k + l bits (also

cf. �gure 3.8). The probability to see such an ~ε is
(
k+l
p

)(
n−k−l
w−p

)(
n
w

)−1
.

2. The l-bit collision requirement in line 14 of algorithm 3.9 must hold. This is the case
for the real ~εI according to equation (3.31). It just �lters out many (though not all)
incorrect choices of ~εI .

3. It must be possible to split the �rst k+ l bits of the real error vector, i.e. ~εI , into ~εI1
and ~εI2 , so that ~εI = ~εI1 +~εI2 with wt(~εI1) = wt(~εI2) = p1 := p/2+∆1 (cf. �gure 3.9).
Due to the choice of p1 and since wt(~εI) = p this is always possible. Actually there

are even R1 :=
( p
p/2

)(
k+l−p

∆1

)
ways to split the vector ~εI into the vectors ~εI1 and ~εI2 .

However just one of these representations in the lists L(1)
i , i = 1, 2 su�ces to make

algorithm 3.9 succeed. That's why May et al. introduced the arti�cial requirement

that (Q′~εIi)[r1] + ~u
(1)
i = ~0 (cf. equation (3.39)) for i = 1, 2. Imagine splitting the

list L into two lists without this requirement: Clearly, their size would be larger than
necessary by a factor of R1. To counteract, we can �x r1 as r1 ≈ log2(R1). Note that
this choice does not depend on r2, because we are looking at �gure 3.9 from bottom
to top.

Also note that for any ~εI1 ∈ L
(1)
1 that makes the additional requirement (Q′~εIi)[r1] +

~u
(1)
i = ~0 hold, the corresponding ~εI2 ∈ L

(2)
2 automatically ful�ls the additional re-

quirement by the construction of the ~u
(1)
i 's.

Nevertheless this way of randomly discarding valid representations of the solution
vector ~ε on layer 1 introduces a probability to fail. More precisely we de�ne the
random variable X1, which shall equal one, if at least one representation of the real
error vector ~ε survives the split between layer 0 and layer 1 (cf. �gure 3.9) and zero
otherwise. Clearly the probability that none of the R1 representations survive that
split is given by Pr[X1 = 0] = (1− 2−r1)R1 . Note that Pr[X1 = 0] ∼ e−1 is constant
for the choice r1 ≈ log2(R1).

4. It must be possible to split the vectors ~εI1 and ~εI2 from the �rst layer into vectors

from the second layer (cf. �gure 3.9), i.e. it must be possible to write ~εIi = ~e
(2)
2i−1 +~e

(2)
2i

with wt(~e
(2)
j ) = p2 := p1/2 + ∆2 for j = 1, . . . , 4. For a correct choice of ~εIi with

wt(~εIi) = p1, i = 1, 2 this is once again always possible. This time we use the

additional requirement (Q′~e
(2)
j )[r2] + ~u

(2)
j = ~0 to make only a fraction of 2−r2 of the

R2 :=
( p1
p1/2

)(
k+l−p1

∆2

)
many representations of ~εIi survive. Once more the construction

of the ~u
(2)
j 's ensures a pairwise "survival" of the ~e

(2)
j 's. A sensible choice of the

parameter r2 immediately follows as r2 ≈ log2(R2).
Analogously to item 3 we de�ne the random variables X2,1 ∈ {0, 1} and X2,2 ∈ {0, 1}
to model the possible event that none or at least one of the representations on layer 1
survives the splits between layer 1 and 2. We know that Pr[X2,1 = 0] = Pr[X2,2 =
0] = (1− 2−r2)R2 .

5. The vectors ~e
(2)
j on the second layer must be in a form that allows for a disjoint

split with p3 := p2/2 1's in positions indexed by the set Pj,1 and another p3 1's
in positions indexed by the set Pj,2 with |Pj,1| = |Pj,2| = (k + l)/2 (assuming that
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k + l is even). Clearly, for a speci�c vector ~e
(2)
j this is only possible with probabil-

ity Ps :=
((k+l)/2
p2/2

)2(k+l
p2

)−1
. Since we choose the index sets Pj,1, Pj,2 independently

for each j = 1, . . . , 4, we may assume that the splitting probabilities for each ~e
(2)
j ,

j = 1, . . . , 4 are independent as well. Thus we can use P := (Ps)4 as the probability
that all splits on the second layer are possible for the real error vector ~ε.
May et al. point out that P is asymptotically only inverse-polynomial in n and there-
fore does not a�ect the asymptotic advantage of using algorithm 3.9 over previously
discussed algorithms.

As only item 1 and 5 contain non-constant success probabilities, the overall success proba-
bility can be computed as

(
k+l
p

)(
n−k−l
w−p

)(
n
w

)−1 · P multiplied by a constant factor c(3); this
results in equation (3.50).
Thereby the constant factor c(φ) is de�ned in accordance to item 3 and 4 as

c(φ) := Pr

∏
i,j

Xi,j = 1

 (3.52)

It models the probability that the j-many splits between the layers i − 1 and the layers
1 ≤ i ≤ φ − 1 work as intended, i.e. do not discard all valid representations of the error
vector ~ε. Unfortunately Pr[Xi,j · Xi+1,j = 1] 6= Pr[Xi,j = 1] · Pr[Xi+1,j = 1], i.e. the
probabilities are not independent, because the probability to have a valid representation of ~ε
on layer 2 (φ = 3) becomes zero, if layer 1 is known to contain no valid representation at all.
However we can use the union bound to obtain the upper bound c(φ) = 1−Pr[

∏
i,j Xi,j =

0] ≥ 1−
∑

i,j Pr[Xi,j = 0].

Remark 3.7.4. Using the union bound is a rather theoretical way to solve the prob-
lem of dependent probabilities. For practical purposes it seems plausible to use c(φ) =
Pr[

∏
i,j Xi,j = 1] ≈

∏
i,j Pr[Xi,j = 1] even though the probabilities are dependent, because

the dependence can have a positive e�ect as well (if more representations than expected
survive a split, even more representations exist for the next one). This is especially re-
quired for more layers (φ > 3, cf. appendix E), where the union bound becomes extremely
bad (c(φ) ≥ 0). Therefore we used this more practical approach in section 4 (table 4.3).
Other than that, the parameters r1 and r2 could be chosen slightly smaller at the cost of
increasing the list sizes. In any case they should be rounded down.

To optimize the runtime of algorithm 3.9, we need to optimize the parameter set (p, l,∆1,∆2)
with regard to the runtime of the function isd() (algorithm 3.1) from section 3.1. Note
that choosing ∆i immediately �xes ri according to the previously mentioned equations

r1 ≈ log2

(( p
p/2

)(
k+l−p

∆1

))
and r2 ≈ log2

(( p1
p1/2

)(
k+l−p1

∆2

))
with p1 := p/2 + ∆1. It seems

almost impossible to see anything general from the equations 3.48 and 3.50. A brute-force
strategy to �nd the optimal parameters within certain ranges is feasible though. The results
of such an implementation are presented in section 4. Also recall that we only need to do a
partial Gaussian elimination in algorithm 3.1, which lowers the complexity of the function

randomize() to that of doing a Gaussian elimination on a matrix T ′ ∈ F(n−k−l)×(n−k−l)
2 only.

By substituting (n−k)→ (n−k−l) we obtain a complexity of (n−k−l)2·(n− 1
2(n−k−l+1))

binary operations for doing a naive partial Gaussian elimination. The same substitution
also works for the optimizations of the Gaussian elimination process (we ensured that it
works at least for the formulas in table 4.1); only the analysis of the overall success proba-
bility of algorithm 3.1 in combination with optimization 3.1.3 needs to be adapted to cope
with the l additional columns (also cf. remark B.0.9).

57



Remark 3.7.5. Note that the substitution is not entirely correct, because it only respects
the complexity of obtaining an identity matrix on the n − k − l lower rows of the matrix

S ∈ F(n−k)×(n−k−l)
2 and disrespects the complexity of creating an all-zero matrix in the �rst

l rows (cf. �gure 3.6). For example a more exact formula for the complexity of a naive
partial Gaussian elimination would be (n− k)(n− k − l) · (n− 1

2(n− k − l + 1)).
Due to the utter insigni�cance of the Gaussian elimination step for most information set
decoding algorithms and practically relevant parameter sets one can usually live with that
error though.

For asymptotic observations we can �nd a rough bound of 20.04934n for the runtime of
algorithm 3.1 in combination with algorithm 3.9 in [21]. So at least from an asymptotic
point of view, the BJMM-algorithm is the current state-of-the-art information set decoding
algorithm. May et al. also show that their algorithm is not a mere time-memory trade-
o� in comparison to the previously discussed algorithms as well as in comparison to the
MMT-algorithm, which is presented in [20]. We could verify this in practice (cf. table 4.3).
Formulas to model the runtime and memory complexity of the BJMM algorithm for an
arbitrary number of layers can be found in appendix E.

Optimizations

Optimization 3.7.1 (Reusing vector additions). Clearly, we can apply optimization 3.3.1
to algorithm 3.9 (lines 1 and 2 of algorithm 3.8). However there are several possibilities
how to exactly apply the technique:

1. We can either apply it for every one of the four calls of the �ndColl() function in
line 12 of algorithm 3.9 and precompute eight times12

(
(k+l)/2
p3

)
column sums or di-

rectly precompute all of the
(
k+l
p3

)
possible column sums and therefore only require to

do the precomputations once.

2. We could try to partially apply the technique to lines 13 and 14 as well. For example
it is possible to compute the

(
(k+l)/2
p3

)
column sums on l rather than r2 bits. Whenever

we need to compute something such as (Q′~l )[rj ] to obtain a list of layer j, we can then

use the fact that the vector ~l can be rewritten as the sum of f(j) = 2|2−j| elements
of base lists, for which we precomputed the column sums. Thus the computation
(Q′~l )[rj ] would cost 2|2−j| · (rj − rj+1) instead of pj+1(rj − rj+1) binary operations

after performing the precomputations at a cost of l ·
(

(k+l)/2
p3

)
(1+δ((k+ l)/2, p3)) once

(for δ(k, p) cf. optimization 3.3.1).
Note that it does not make any sense to compute signi�cantly more than

(
(k+l)/2
p3

)
column sums: If we computed e.g. all

(
k+l
p2

)
column sums, we could also directly

create the lists on layer 2.

Regarding item 1 it is useful to know that
(
k+l
p3

)(
(k+l)/2
p3

)−1
> 2p3 (cf. lemma 3.7.3), i.e. com-

puting eight times
(

(k+l)/2
p3

)
column sums is certainly the better choice, if p3 ≥ 3. For p3 = 2

it becomes questionable, whether this optimization technique makes any sense at all; we do
not need to precompute anything, but can rather save the sums of two columns (p3 = 2)
whenever we need to compute them and reuse the saved sums whenever possible. For p3 = 1
we do not need to compute any sums at all � we just select columns.
To estimate whether the second proposal to compute the

(
(k+l)/2
p3

)
column sums on e.g. l

12We might be able to reuse a part of the precomputations of the column sums of Q′ for non-disjoint
index sets Pi,b, Pj,b, j 6= i though.
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rather than r2 bits is worthwhile, let us �rst review the naive approach: Using the naive
approach of precomputing eight times

(
(k+l)/2
p3

)
column sums we get for the runtime t12 in

line 12 of algorithm 3.9:

t12 = 4 ·
(

2|B| · r2 · (1 + δ((k + l)/2, p3)) +
|B|2

2r2
(k + l) + 2tsort(|B|)

)
The runtime in the other lines remains the same. According to lemma 3.7.1 this results in

time {searchBJMM()[o3.7.1]} = 8|B| · (1 + δ((k + l)/2, p3))r2 + . . .

whilst the memory consumption increases by a constant factor.
In contrast the second proposal implies the following runtimes (cf. lemma 3.7.1), if we
decide to compute the

(
(k+l)/2
p3

)
column sums on l rather than r2 bits:

t12 = 4 ·
(

2|B| · l · (1 + δ((k + l)/2, p3)) + . . .

t13 = 2 ·
(

2|L(2)| · f(1) · (r1 − r2) + . . .

t14 = 2 · |L(1)| · f(0) · (l − r1) + . . .

So in comparison to the naive approach we get an additional workload of A := 8|B| · (l −
r2)(1 + δ((k + l)/2, p3)) in line 12 and gain an advantage of G := 4|L(2)|(p2 − f(1))(r1 −
r2)+2|L(1)| · (p1−f(0))(l−r1) in lines 13 and 14. Thus the second proposal is worthwhile,
if G > A. Certainly this is not the case for all parameter sets: The inequality does
not hold, if |L(1)| or |L(2)| happen to be signi�cantly smaller than |B| or if the pi's are
rather small. However this does not seem to be the usual case in practice (cf. table 4.3
on page 70). Nevertheless we implemented both options for section 4. Whenever this
optimization technique was applied, table 4.3 contains the runtime complexities for the
better of the two variants. Thereby " 1" indicates that the naive variant was used, whereas
" 2" means that the precomputation of the column sums on l bits was more optimal.
The formulas in table 4.1 refer to the naive variant.

Lemma 3.7.3.
(
k+l
p3

)(
(k+l)/2
p3

)−1
> 2p3

Proof.(
k + l

p3

)
=

(k + l)!

p3!(k + l − p3)!
=

(
(k + l)/2

p3

)
· (k + l) · . . . · ((k + l)/2 + 1)

(k + l − p3) · . . . · ((k + l)/2− p3 + 1)

=

(
(k + l)/2

p3

)
· (k + l) · . . . · (k + l − p3 + 1)

((k + l)/2) · . . . · ((k + l)/2− p3 + 1)
>

(
(k + l)/2

p3

)
· 2p3

Actually we even have
(
k+l
p3

)
≈
(

(k+l)/2
p3

)
·2p3 as long as k+l� p3. Lemma 3.7.3 immediately

follows.

Optimization 3.7.2 (Early abort). The usual early abort strategy introduced in optimiza-
tion 3.3.2 also works in line 4 of algorithm 3.8 as well as in line 16 of algorithm 3.9.
Applying this technique to those two lines reduces the runtime of the �ndColl() function to

time {findColl()[o3.7.2]} = 2|L(j+1)|pj+1(rj − rj+1) +
|L(j+1)|2

2rj−rj+1
2(pj + 1) + 2tsort(|L(j+1)|)
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and the overall runtime of algorithm 3.9 becomes

time {searchBJMM()[o3.7.2]} = 8|B| · p3r2 +
4|B|2

2r2
(2(p2 + 1) + p2(r1 − r2))

+
2

2r1

(
|B|4

2r2
2(p1 + 1) + b1(Ps)2p1(l − r1)

)
+

(Ps)4

2l

(
b21
2r1

2(p+ 1) + b02p(w − p+ 1)

)
+

3∑
i=1

2i · tsort(|L(i)|)

whilst the memory consumption remains the same.

Optimization 3.7.3 (Birthday Speedup). To understand whether the birthday speedup
(cf. optimization 3.4.4) can be applied to algorithm 3.9 or not, let us �rst review how the
BJMM algorithm works (also cf. �gure 3.9): On layer 0 we hope to have the list L as
de�ned in equation (3.38). Note that the additional constraint (Q′~εI)[l] + ~ς[l] = ~0 does not
remove any valid solutions of the computational syndrome decoding problem. We split all

of the list items of L into two summands that can be found in the lists L(1)
1 and L(1)

2 .
Per list item on layer 0 there exist R1 many representations of these items on layer 1,
so that we introduce an additional constraint (collisions on r1 ≈ log2(R1) bits) to control
the number of representations, because we just need one representation of each of the list
items on layer 0 on average. Basically the same is done between layer 1 and layer 2.
However something strange happens between layer 2 and 3: We split each list item on
layer 2 into two vectors, that are required to have their 1's in disjoint positions, because
we desire to stop the divide-and-conquer approach and thus need to construct the lists on
layer 2 in some way. May et al. use a meet-in-the-middle approach to do so, because it
is the simplest and fastest way to obtain relevant insights from a theoretical point of view;
however this also introduces the rather counter-intuitive and practically relevant inverse
polynomial probability Ps, which a�ects the list de�nitions on all layers (cf. remark 3.7.2).
Alternatively we could use a straightforward approach and split each list element on layer 2
into two vectors as usual (with possibly non-disjoint sets of 1's), which both have a weight
of p′3 := p2/2 + ∆3. Then we could iterate over all of these

(
k+l
p′3

)
elements in a brute-

force approach. Clearly, this part is more complex than the meet-in-the-middle approach,
but also eliminates the split probability Ps, which is bene�cial for the success probability
(cf. equation (3.50)) and hurts about the same in equation (3.47). It is unclear, whether
or not this straightforward approach is more e�cient. It is also rather unclear, whether
the number of layers is optimal with this approach; even though it seems as if adding more
layers could be useful to lower the brute force complexity, if needed. Answers to these
questions can be found in section 4.
Anyway it is important to see that such a split between layer 2 and 3 would once again
imply a number of R3 :=

( p2
p2/2

)(
k+l−p2

∆3

)
representations of each list item from layer 2 on

layer 3, i.e. the brute-force approach would imply a factor of R3 useless computations13!
Note that we cannot use the collision trick this time to reduce that number, because we do
not know how to directly generate list items satisfying the collision constraint. This is where
the birthday speedup helps: We can sample the required base lists uniformly at random and
only generate as many base list items as can be assumed to be necessary to ensure that the
base lists contain roughly one representation of every list item on layer 2.
The basic question to analyse this technique is: With what probability does a list item on

13Therefore ∆3 = 0 is always optimal with this approach.
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layer 2 have a representation on layer 3, if the base lists are sampled uniformly at random
and both have size N? For a �xed vector the chance to "hit" a representation of that

vector by two uniform choices in Fk+l
2 with weight p′3 is given by R3 ·

(
k+l
p′3

)−2
. Since N2

combinations exist, the probability that a list item on layer 2 has a representation on layer 3
is14

PN := 1−

(
1−R3

(
k + l

p′3

)−2
)N2

By using the following two rede�nitions in the context of the birthday speedup in combina-
tion with the BJMM algorithm we can then easily obtain all relevant information from the
equations (3.48), (3.49) and (3.50):

Ps : = PN (rede�nition)

|B| : = N (rede�nition)

Note that we introduced the additional variable ∆3 this time to apply the representation
trick from [21] to the birthday speedup as well.

As usual, one way to choose the new parameter N is to set it to N ≈ R−1/2
3

(
k+l
p′3

)
. This way

we get limn→∞ PN = 1− 1
e ≈ 63% and limn→∞(PN )4 = (1− 1

e )4 ≈ 16%. So in comparison

to the straightforward brute-force approach our base lists are smaller by a factor of R
1/2
3 for

this choice of N , but the success probability decreases to approximately 16% of its original
value. This rather large penalty in comparison to the applications of the birthday speedup
to other algorithms comes from the layer structure of algorithm 3.9. It remains the task of
section 4 to discuss whether or not this penalty is worth it.

14Actually there exist no list items on layer 2 without representation in layer 3 in algorithm 3.9. There-
fore the sentence only makes sense for a "perfect" list de�nition as the one in equation (3.40) without
remark 3.7.2.
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4 Comparison

Over the last �fty years many new information set decoding algorithms were developed
and old ones improved upon. A common source of improvement is to generalize existing
algorithms. Figure 4.1 shows the relations between the algorithms presented in this thesis.
Thereby we may assume that a generalization is usually the better choice than a spe-
cialization in practice, simply because it is highly unlikely that �xing a parameter with a
certain value for arbitrary parameter sets is always more optimal than being able to choose
that parameter freely. In fact, Bernstein et al. proved in [19] that Ball-Collision Decoding
(BCD) performs better than its specialization (Stern's algorithm) both asymptotically and
in practice. May et al. provide some Mathematica code in combination with [21], which
aims to prove that φ = 3, i.e. using four layers for the BJMM algorithm is asymptotically
optimal, which indirectly makes the FS-ISD algorithm (φ = 1) asymptotically inferior
to the BJMM algorithm. Moreover they proved in [20] that FS-ISD is asymptotically at
least as e�cient as the BCD algorithm; a statement which e�ectively makes the BJMM
algorithm the best out of the discussed algorithms � at least asymptotically.

BCD

Stern

Prange

Lee-Brickell

FS-ISD
(part. G.)

BJMM

p = 0, l = 0p = 0

z = 0

asym. ≤

φ = 1

Figure 4.1: Generalizations and specializations of the presented information set decoding
algorithms. φ + 1 is the number of layers in the BJMM algorithm; the description in
section 3.7 uses φ = 3. Contrary to the FS-ISD algorithm described in section 3.6 we
assume that FS-ISD uses a partial Gaussian elimination here.

It remains our task to estimate the practical relevance of these asymptotic statements. To
do so, we used the formulas for the runtime and memory complexities of the various algo-
rithms presented in the previous sections and implemented them in C++ with the help of
the libraries NTL and GMP [33, 34], which were mostly chosen due to their support of big
integers and arbitrary precision �oating point operations. We also implemented the formu-
las for all of the optimizations presented in this thesis as well as arbitrary combinations of
them. In particular we did not implement the specialized formulas (φ = 3) for the BJMM
algorithm presented in section 3.7, but rather used the formulas for an arbitrary number
of layers from appendix E. The goal was to provide an application, which enables the user
to �nd the optimal algorithmic parameters for a speci�c parameter set (n, k, w). This
is possible by iterating over all sets of algorithmic parameters in a brute-force approach,
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which can easily be achieved for many algorithms (Stern, Lee-Brickell, FS-ISD), because
their parameter spaces are rather small. For some algorithms however (BCD, BJMM) it
is necessary to only search in reasonable parameter ranges.
At the heart of the program lie the following two equations already mentioned in section 3.1:

time {isd()} = PRALG[success]−1(time {randomize()}+ time {searchALG()}) (4.1)

mem {isd()} = O(n2) +mem {searchALG()} (4.2)

Recall that time {randomize()}models the time spent in the Gaussian elimination process,
time {searchALG()} the time spent in the speci�c search algorithm and PRALG[success]
the average success probability of the search algorithm. An overview of the formulas for
the Gaussian elimination process in combination with di�erent optimizations as well as
an overview of the runtime formulas of the various search algorithms with di�erent opti-
mizations is presented in table 4.1. Table 4.2 shows the formulas for the average success
probabilities. These formulas are closely related to the weight distributions of the error
vector ~ε that the di�erent algorithms hope for (cf. �gure 4.2).
All of these formulas (and some more) were implemented. We also implemented the fol-
lowing two security bounds, which are meant to help designers of code-based cryptosystems
estimate the complexity of attacking a speci�c parameter set (n, k, w):

FS bound: This lower bound is the main result of the paper [26]. The bound is known
to be beaten by Ball-Collision Decoding (see [19, section 6]) for su�ciently large n
and can thus be expected to be beaten by BJMM and other algorithms, which are
asymptotically at least as e�cient as BCD, as well (cf. [21, table 1]); ironically this
would even include the FS-ISD algorithm according to [20]. The bound is beaten
for two reasons: First, the structure of [26, table 2] is not necessarily applicable to
all information set decoding algorithms (Finiasz and Sendrier do not claim it to be
though) and second, some of their assumptions do not seem to hold (cf. remark 3.4.3
and see [19, section 6]).
In any case it is interesting to investigate, whether or not this bound is beaten for
practically relevant parameter sets as well.
Due to its complexity we do not display the concrete bound here, but rather refer
the reader to [26, proposition 2].

BCD bound: In contrast Bernstein et al. proposed the following rather straightforward
bound in 2010:

min
p≥0

{
1

2
·
(
n

w

)(
n− k
w − p

)−1(k
p

)−1/2
}

(4.3)

This is basically the inverse success probability of Lee-Brickell's algorithm (cf. ta-

ble 4.2) multiplied by
(
k
p

)1/2
, because Bernstein et al. assume that each iteration

of the algorithm has to consider at least
(
k
p

)1/2
error patterns (as with birthday-

type attacks) and testing each pattern costs at least one binary operation. For a
more detailed description the interested reader is referred to [19, appendix B]. The
authors claim: "In any event, it is clear that beating this bound would be an aston-
ishing breakthrough." Its rough bound 20.05265n however indicates that it is at least
asymptotically beaten by the BJMM algorithm.

To concretely compare the performance of the information set decoding algorithms we
chose the following parameter sets (n, k, w):

(1024,524,50): The parameter set originally proposed by R. J. McEliece in [3] for his
cryptosystem (cf. section 2.2.2).
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(1632,1269,34): McEliece parameter set proposed for 80-bit security in [14].

(2960,2288,57): McEliece parameter set proposed for 128-bit security in [14].

(6624,5129,117): McEliece parameter set proposed for 256-bit security in [14].

Note that these parameter sets were proposed in 2008 with Stern's algorithm in mind only.
Our results are displayed in table 4.3: The time and memory complexities use logarithmic
units (base 2) and the memory complexity ignores constant factors (Landau notation).
Apart from that, all polynomial and mostly even constant factors are meant to be respected.
With regard to the FS-ISD algorithm we looked at both the variant described in section 3.6
as well as the original FS-ISD algorithm, which only does a partial Gaussian elimination
(part. G.). The BJMM algorithm was investigated in the three variants discussed in
optimization 3.7.3, i.e. once with the meet-in-the-middle approach to create the base lists
on the uppermost layer as described in the original paper [21] (BJMM), once with a uniform
sampling approach (BJMM (uniform)) and once with a brute force approach for these lists
(BJMM (brute f.)).
The parameters seen in table 4.3 are known to be the optimal ones for these speci�c
(n, k, w), given that the parameter set is not marked with a "∗" to indicate that we could not
search the whole parameter space. The set M in combination with the BJMM algorithm
is meant to contain the layers, in which the usage of hash maps was possible and taken
into account according to remark 3.7.3 (e.g. M = {1, 2} means that hash maps could be
used on layers 1 and 2). Since we were interested in the impact of applying hash maps, we
also list some parameter sets that are optimal, if hash map usage is avoided (marked with
"(no hash maps)").
Note that the union bound mentioned in remark 3.7.4 was not applied for the BJMM
algorithm, but we rather assumed the probabilities in question to behave as if they were
independent. In all other cases where inequalities had to be applied, the runtime and
memory complexities were correctly upper bounded.
Table 4.3 enables us to gain various interesting insights:

Gaussian elimination: Only Prange's algorithm always bene�ts from the Gaussian op-
timizations, because it basically only consists of performing Gaussian eliminations.
That's also why for Prange's algorithm x = 1 always seems optimal for optimiza-
tion 3.1.3. For all of the other algorithms, the Gaussian elimination process becomes
utterly irrelevant for relatively large n already. For example Stern's algorithm with
the parameter set n = 1632, k = 1269, w = 34 without optimization 3.1.3 has a
complexity of 80.53276093 (log2), i.e. by using optimization 3.1.3 we gain a factor of
less than 1.072. For the larger parameter sets and especially the BJMM algorithm
this factor is even less signi�cant. Therefore we only used the less powerful opti-
mization 3.1.2 or no Gaussian elimination optimizations at all for these parameter
sets.

Partial Gaussian elimination: Whether or not the FS-ISD algorithm uses a partial
Gaussian elimination does not really make a di�erence. Nevertheless it is worth
observing that the bene�t of using a partial Gaussian elimination instead of a full
Gaussian elimination becomes totally insigni�cant in the presence of techniques such
as the Gaussian optimization 3.1.3.

Stern vs. FS-ISD vs. BCD: Stern's algorithm and the FS-ISD algorithm behave quite
similarly. The BCD algorithm starts to become better than both for larger n at the
cost of an increasing memory usage due to the relatively large choices of the param-
eter l. According to Bernstein et al. the reason for this observation lies in the fact
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that the inner loop of the BCD algorithm (lines 2-5 and lines 8-11 of algorithm 3.6)
makes BCD faster than Stern's algorithm and the FS-ISD algorithm by a polynomial
factor (see [19, section 4]). In combination with the proof from [20] this indicates
that BCD and FS-ISD are asymptotically equivalent, but BCD performs better by
the aforementioned polynomial factor in practice.

Birthday Speedup for FS-ISD: At �rst sight it is rather surprising to see that the
birthday speedup is not the best way to optimize the FS-ISD algorithm. In fact
using optimization 3.6.1, which is incompatible to the birthday speedup (optimiza-
tion 3.6.3), is always the better choice: For example for n = 2960, k = 2288,
w = 57, FS-ISD with optimizations 3.1.2 and 3.6.2 only has a runtime complex-
ity of 129.4602838 (log2), which is insigni�cantly lowered by the birthday speedup,
but lowered by a factor of more than 2 by optimization 3.6.1 (cf. table 4.3).

BJMM memory consumption: As long as using hash maps is allowed, the BJMM al-
gorithm performs better than all other algorithms, even for the smaller parameter
sets. However the comparatively large choices of l and p result in a larger mem-
ory consumption than with the other algorithms. Luckily it seems to be possible to
�nd BJMM parameters that trade a relatively small runtime factor for a relatively
large memory consumption factor. We exemplary listed some of these parameter
sets in table 4.3 (see e.g. the two values for the parameter set (2960, 2288, 57) in
the row "BJMM (uniform)"). Also note that we could �nd a parameter set for
(n, k, w) = (6624, 5129, 117), for which the BJMM algorithm (brute force) performs
better than the BCD algorithm by a factor of at about 210 whilst consuming roughly
four times less memory.
However recall that the formulas modeling the memory consumption of the BJMM
algorithm model the worst case memory consumption at any point in time during
the execution of the algorithm. This implies that most of the time the memory con-
sumption will be smaller, but the number of memory accesses may even be larger.
Since memory access times are usually a bottleneck, this could be a problem in prac-
tice. Unfortunately it is not common in literature to model the number of memory
accesses as well, because such models tend to be more complicated.

BJMM without hash maps: Without using hash maps, the BJMM algorithm is only
relevant for the two larger parameter sets. For the parameter sets in table 4.3 the
usual cost of not using hash maps is a factor of 22 . . . 23.

BJMM variants: The meet-in-the middle approach for the BJMM base lists on the up-
permost layer is inferior to both other variants in practice. Out of the latter two, the
brute force approach is usually the better choice in table 4.3. However it must be ad-
mitted that we could not compute the success probability for extremely large N
in combination with the uniform sampling approach (e.g. for the parameter set
(6624, 5129, 117)) exactly, but had to use disadvantageous lower bounds instead15

(similar to remark 3.5.4), so that the exact complexity might actually be better than
the one of the brute force approach.

BJMM � optimal number of layers: φ = 2 is usually optimal for BJMM, if the brute
force approach is not used. So FS-ISD (φ = 1) is clearly the suboptimal choice, but
the asymptotically proven optimal choice φ = 3 is not generally optimal neither. For
BJMM in combination with the brute force approach φ = 3 is almost always optimal
in table 4.3, because adding an additional layer decreases the size of the base lists

15Even libraries such as NTL and GMP do not accept arbitrary length exponents.
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and thus the complexity of iterating over all of their items, which seems to be worth
the additional list merging operations between layer 3 and 2 (cf. �gure 3.9).

BJMM optimizations: Let us exemplary outline the e�ect of the asymptotically most
important optimization techniques, namely optimization 3.7.1 and optimization 3.7.2
on the BJMM algorithm: Without any optimizations the BJMM algorithm (brute f.)
has a complexity of 82.62480007 (log2) for the parameters n = 1632, k = 1269, w =
34, l = 93, p = 16, φ = 3, ∆1 = 4, ∆2 = 0. Applying optimization 3.7.2 impressively
decreases the complexity to 78.11274743. Additionally applying optimization 3.7.1
(the more complex variant on l bits as indicated by the "2" in table 4.3) further
decreases it to 77.27066725. Note that the naive variant of optimization 3.7.1 would
only have had the e�ect of slightly decreasing the complexity to 78.1127468.
It may di�er per parameter set, whether optimization 3.7.1 or optimization 3.7.2 is
more signi�cant.

FS bound: The FS bound is beaten for all parameter sets, that might o�er an acceptable
security level in practice. Therefore it must be considered to be useless in practice as
it fails to achieve its goal, namely to "help other designers choose durable parameters
with more ease" [26].

BCD bound: The BCD bound is beaten as well by two variants of the BJMM algorithm
for the parameter set (6624, 5129, 117). Even applying the union bound in the case
of the brute force approach only increases the complexity to only 236.317966 binary
operations (log2) and thus does not a�ect this statement. The question is: Why
was the BCD bound beaten? The answer is relatively straightforward: First, the
success probability of the BJMM algorithm is signi�cantly better than the one of
Lee-Brickell's algorithm due to the additional parameter l, which enables us to bet-
ter balance the terms in the numerator as well as the number of iterations and the
complexity per iteration in general (cf. table 4.2). Second, the BJMM algorithm

considers less than
(
k+l
p

)1/2
and even less than

(
k
p

)1/2
error patterns per iteration

by ignoring many patterns at the cost of losing a polynomial factor for the success
probability; it requires more than one binary operation per error pattern though.
For instance for the parameter set (6624, 5129, 117) the BCD bound implies 2133.0270922

iterations at a complexity of 2104.4693296 binary operations each (for p = 23 and with-
out the constant factor). In contrast the BJMM algorithm using the brute-force
approach only requires 297.33275571 iterations, each at a complexity of 2138.0450819 bit
operations.
We do not want to propose another security bound, but rather ask designers of
code-based cryptosystems to consider the runtime complexities of the current state-
of-the-art information set decoding algorithms instead. This can be achieved rather
easily by using tools such as the one provided with this thesis.

All in all the BJMM algorithm can be expected to signi�cantly lower the complexity of
decoding random linear codes for practical applications as well.
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Remark 4.0.6. At �rst sight it is irritating to see that the memory examples in table 4.1
exhibit greater exponents than the runtime examples. However the memory formulas mostly
describe the memory consumption in bits, whereas we assumed for the runtime model that
it is possible to generate certain bit vectors of �xed length within a single binary operation.
So basically the units for both example types are fundamentally di�erent ones. That's also
why the Landau notation is used for the memory formulas.

Remark 4.0.7. The values for the FS bound in table 4.3 are usually slightly below the
values found in literature (e.g. in [26, 19]). The di�erence to the examples found in [26,
table 3] can be explained by the fact that we did not discard small p's as suggested by
Finiasz and Sendrier. Other than that the variable Kw−p was not �xed in [26], which
makes comparisons even more di�cult. We used Kw−p := 2(w−p+ 1) with the early abort
optimization in mind.

algorithm PR[success = true] ex. reference

Prange
(
n−k
w

)(
n
w

)−1
53.61 sec. 3.2

Lee-Brickell
(
k
p

)(
n−k
w−p
)(
n
w

)−1
42.93 sec. 3.3

Stern
(k/2
p/2

)2(n−k−l
w−p

)(
n
w

)−1
33.70 sec. 3.4

Stern
("Birthday speedup")

(kp)(
n−k−l
w−p )

(nw)

[
1−

(
1−

( p
p/2

)(
k
p/2

)−2
)N2

]
32.97 opt. 3.4.4

Ball-Collision
Decoding

(k/2
p/2

)2( l/2
z/2

)2(n−k−l
w−p−z

)(
n
w

)−1
33.33 sec. 3.5

FS-ISD
((k+l)/2

p/2

)2(n−k−l
w−p

)(
n
w

)−1
33.28 sec. 3.6

BJMM
(
k+l
p

)(
n−k−l
w−p

)(
n
w

)−1 · (Ps)4 · c(3) 31.51 sec. 3.7

Table 4.2: Overview of the average success probabilities per iteration of the algorithms that
were analysed in this thesis. The logarithmic base-2 examples (ex.) refer to the inverse
success probability PR[success = true]−1 and use n = 1024, k = 524, w = 50; the other

parameters were chosen as in table 4.1. Ps :=
((k+l)/2
p2/2

)2(k+l
p2

)−1
.

←−−−−−−− k −−−−−−−→ ←−−−−−−−−−−− n− k −−−−−−−−−−−→
←− l −→ ←−−−−− n− k − l −−−−−→

Prange 0 w

Lee-Brickell p w − p

Stern p/2 p/2 0 w − p

BCD p/2 p/2 z/2 z/2 w − p− z

FS-ISD p/2 p/2 w − p

BJMM p w − p

Figure 4.2: weight distribution of ~ε for di�erent information set decoding algorithms

69



T
ab
le
4.
3:

R
u
n
ti
m
e
an
d
m
em

or
y
co
m
p
le
x
it
ie
s
of

th
e
al
go
ri
th
m
s
d
is
cu
ss
ed

in
th
is
th
es
is
fo
r
co
n
cr
et
e
p
ar
am

et
er

ex
am

p
le
s.

(n
,k
,w

)
a
lg
o
ri
th
m

o
p
ti
m
iz
a
ti
o
n
s

ti
m
e

m
e
m

p
a
ra
m
e
te
rs

(1
0
2
4
,5
2
4
,5
0
)

F
S
b
o
u
n
d

B
C
D

b
o
u
n
d

P
ra
n
g
e

L
ee
-B
ri
ck
el
l

S
te
rn

B
C
D

F
S
-I
S
D

F
S
-I
S
D

(p
a
rt
.
G
.)

B
J
M
M

(n
o
h
a
sh
m
a
p
s)

B
J
M
M

(u
n
if
o
rm

)

(n
o
h
a
sh
m
a
p
s)

B
J
M
M

(b
ru
te

f.
)

(n
o
h
a
sh
m
a
p
s)

- - 3
.1
.3

3
.1
.3
,
3
.3
.1
,
3
.3
.2

3
.1
.3
,
3
.4
.2
,
3
.4
.3

3
.1
.3
,
3
.5
.1
,
3
.5
.2

3
.1
.3
,
3
.6
.1
,
3
.6
.2

3
.1
.3
,
3
.6
.3
,
3
.6
.2

3
.1
.3
,
3
.6
.1
,
3
.6
.2

3
.1
.3
,
3
.7
.1

1
,
3
.7
.2

3
.1
.3
,
3
.7
.1

2
,
3
.7
.2

3
.1
.3
,
3
.7
.2

3
.1
.3
,
3
.7
.2

3
.1
.3
,
3
.7
.1

1
,
3
.7
.2

3
.1
.3
,
3
.7
.1

2
,
3
.7
.2

5
9
.0
3
0
6
8
6
7
2

4
9
.6
9
2
6
0
4
0
6

7
4
.9
6
1
0
5
2
3
7

6
7
.3
1
9
7
4
2
9
4

6
1
.4
9
9
6
2
8
4
9

6
1
.4
9
9
6
2
8
4
9

6
1
.3
2
6
6
6
1
8
4

6
2
.4
7
2
3
0
9
3
7

6
1
.3
9
3
3
6
1
2
8

6
1
.2
3
8
7
4
9
0
4

6
3
.0
5
4
8
6
6
3
5

5
9
.9
3
3
2
7
8
8
7

6
2
.0
8
3
7
8
6
2
8

6
0
.1
9
6
1
6
4
6
9

6
2
.0
9
0
5
7
9
5
3

- - 2
0
.0
0
1
4
0
8
1
9

2
6
.0
5
1
8
0
8
5
2

2
9
.6
7
0
4
3
0
8
5

2
9
.6
7
0
4
3
0
8
5

2
9
.9
4
4
1
9
9
3
9

3
1
.7
2
8
7
4
3
5
3

2
9
.9
4
4
1
9
9
3
9

3
2
.7
8
0
1
8
8
1
9

2
8
.1
0
7
4
5
0
3
9

2
9
.5
1
9
8
1
1
9
2

2
9
.5
0
7
0
7
2
1
4

2
9
.5
6
9
6
3
4
2
9

2
9
.5
4
1
8
5
4
1
4

- - x
=

1

p
=

2
,
x

=
2
1

l
=

2
6
,
p

=
6
,
x

=
1
6

l
=

2
6
,
p

=
6
,
z

=
0
,
x

=
1
6
∗

l
=

2
6
,
p

=
6
,
x

=
4
1

l
=

2
6
,
p

=
6
,
N

=
6
1
7
6
6
5
1
,
x

=
7
3
∗

l
=

2
6
,
p

=
6
,
x

=
4
1

φ
=

2
,
l

=
4
2
,
p

=
8
,

∆
1

=
2
,
x

=
3
9
,
M

=
{1
,2
}
∗

φ
=

2
,
l

=
2
6
,
p

=
6
,

∆
1

=
1
,
x

=
2
9
,
M

=
{}
∗

φ
=

2
,
l

=
3
0
,
p

=
6
,

∆
1

=
1
,

∆
2

=
0
,
N

=
1
1
5
0
0
0
,
x

=
4
4
,
M

=
{1
,2
}
∗

φ
=

2
,
l

=
2
8
,
p

=
6
,

∆
1

=
1
,

∆
2

=
0
,
N

=
1
2
0
0
0
0
,
x

=
6
9
,
M

=
{}
∗

φ
=

3
,
l

=
3
0
,
p

=
6
,

∆
1

=
1
,

∆
2

=
0
,
x

=
3
8
,
M

=
{1
,2
}
∗

φ
=

2
,
l

=
2
8
,
p

=
6
,

∆
1

=
1
,
x

=
7
1
,
M

=
{}
∗

(1
6
3
2
,1
2
6
9
,3
4
)

F
S
b
o
u
n
d

B
C
D

b
o
u
n
d

P
ra
n
g
e

L
ee
-B
ri
ck
el
l

S
te
rn

B
C
D

F
S
-I
S
D

F
S
-I
S
D

(p
a
rt
.
G
.)

B
J
M
M

(n
o
h
a
sh
m
a
p
s)

B
J
M
M

(u
n
if
o
rm

)

B
J
M
M

(b
ru
te

f.
)

(n
o
h
a
sh
m
a
p
s)

- - 3
.1
.3

3
.1
.3
,
3
.3
.1
,
3
.3
.2

3
.1
.3
,
3
.4
.2
,
3
.4
.3

3
.1
.3
,
3
.5
.1
,
3
.5
.2

3
.1
.3
,
3
.6
.1
,
3
.6
.2

3
.1
.3
,
3
.6
.3
,
3
.6
.2

3
.1
.3
,
3
.6
.1
,
3
.6
.2

3
.1
.4
,
3
.7
.1

2
,
3
.7
.2

3
.1
.4
,
3
.7
.1

2
,
3
.7
.2

3
.7
.1

2
,
3
.7
.2

3
.1
.2
,
3
.7
.2

3
.1
.2
,
3
.7
.2

3
.1
.4
,
3
.7
.1

2
,
3
.7
.2

3
.7
.1

2
,
3
.7
.2

3
.7
.1

2
,
3
.7
.2

7
9
.8
9
9
7
2
8
7
9

6
8
.6
0
1
1
4
0
1
8

9
7
.7
7
5
7
8
0
3
4

8
8
.6
1
3
8
7
1
6
7

8
0
.4
5
7
9
4
5
1
9

8
0
.4
5
7
9
4
5
1
9

8
0
.3
6
4
2
4
5
9
4

8
1
.6
3
6
9
5
9
7
7

8
0
.3
9
7
8
6
0
1
5

7
8
.7
6
3
8
9
9
5
5

7
8
.5
1
8
2
1
1
3
6

8
2
.1
5
9
8
9
8
7
4

7
8
.7
0
9
9
5
6
3
6

7
8
.1
2
2
3
6
8
7

7
9
.3
8
0
5
5
9
8
6

7
7
.2
7
0
6
6
7
2
5

8
0
.6
2
0
7
7
9
0
1

- - 2
1
.3
4
5
7
3
4
4
2

2
8
.1
3
4
7
4
6
4
9

3
4
.7
0
8
3
9
5
2
9

3
4
.7
0
8
3
9
5
2
9

3
4
.8
5
2
8
9
2
9
1

3
6
.5
9
6
7
1
5
4
7

3
4
.8
5
2
8
9
2
9
1

4
4
.9
7
8
1
3
3
7
5

5
2
.4
7
0
5
6
7
7
3

4
8
.7
9
5
3
7
7
2
3

4
6
.5
7
0
8
8
4
6
4

5
4
.1
7
8
5
6
6
7
5

3
4
.7
4
4
8
5
3
9
3

5
8
.0
4
4
1
4
5
4

5
8
.0
1
5
8
0
3
4
3

- - x
=

1

p
=

2
,
x

=
2
9

l
=

3
0
,
p

=
6
,
x

=
3
6

l
=

3
0
,
p

=
6
,
z

=
0
,
x

=
3
6
∗

l
=

3
1
,
p

=
6
,
x

=
6
4

l
=

2
9
,
p

=
6
,
N

=
7
8
3
1
1
7
7
1
,
x

=
9
5
∗

l
=

3
1
,
p

=
6
,
x

=
6
5

φ
=

2
,
l

=
5
1
,
p

=
1
0
,

∆
1

=
1
,
r

=
6
,
M

=
{1
}
∗

φ
=

2
,
l

=
7
7
,
p

=
1
4
,

∆
1

=
3
,
r

=
6
,
M

=
{1
,2
}
∗

φ
=

2
,
l

=
6
1
,
p

=
1
2
,

∆
1

=
2
,
M

=
{}
∗

φ
=

2
,
l

=
5
1
,
p

=
1
0
,

∆
1

=
1
,

∆
2

=
0
,
N

=
1
4
5
5
2
0
0
3
9
,
M

=
{1
}
∗

φ
=

2
,
l

=
7
9
,
p

=
1
4
,

∆
1

=
3
,

∆
2

=
0
,
N

=
3
3
1
9
2
2
3
4
0
1
1
1
2
,
M

=
{1
,2
}
∗

φ
=

3
,
l

=
3
5
,
p

=
6
,

∆
1

=
1
,

∆
2

=
0
,
r

=
6
,
M

=
{1
,2
}
∗

φ
=

3
,
l

=
9
3
,
p

=
1
6
,

∆
1

=
4
,

∆
2

=
0
,
M

=
{1
,2
}
∗

φ
=

3
,
l

=
9
1
,
p

=
1
6
,

∆
1

=
4
,

∆
2

=
0
,
M

=
{}
∗

C
o
n
ti
n
u
e
d
.
.
.

70



(c
on
ti
n
u
ed
)

(n
,k
,w

)
a
lg
o
ri
th
m

o
p
ti
m
iz
a
ti
o
n
s

ti
m
e

m
e
m

p
a
ra
m
e
te
rs

(2
9
6
0
,2
2
8
8
,5
7
)

F
S
b
o
u
n
d

B
C
D

b
o
u
n
d

P
ra
n
g
e

L
ee
-B
ri
ck
el
l

S
te
rn

B
C
D

F
S
-I
S
D

F
S
-I
S
D

(p
a
rt
.
G
.)

B
J
M
M

B
J
M
M

(u
n
if
o
rm

)

B
J
M
M

(b
ru
te

f.
)

(n
o
h
a
sh
m
a
p
s)

- - 3
.1
.3

3
.1
.3
,
3
.3
.1
,
3
.3
.2

3
.1
.2
,
3
.4
.2
,
3
.4
.3

3
.1
.2
,
3
.5
.1
,
3
.5
.2

3
.1
.2
,
3
.6
.1
,
3
.6
.2

3
.1
.2
,
3
.6
.3
,
3
.6
.2

3
.1
.2
,
3
.6
.1
,
3
.6
.2

3
.7
.1

2
,
3
.7
.2

3
.7
.2

3
.7
.2

3
.7
.1

2
,
3
.7
.2

3
.7
.1

2
,
3
.7
.2

1
2
7
.7
9
1
8

1
1
4
.3
0
5
8
9
3
6

1
4
8
.7
8
9
0
5
6
4

1
3
8
.6
9
2
8
1
5
9

1
2
8
.1
2
0
5
7
9
8

1
2
7
.9
0
2
6
3

1
2
8
.0
4
0
7
9
7
1

1
2
9
.3
1
7
8
7
3
5

1
2
8
.0
5
6
5
1
6
5

1
2
2
.7
3
1
5
5
8
4

1
2
3
.9
9
1
8
4
4
6

1
2
1
.9
1
1
6
7
0
7

1
2
0
.2
2
9
4
6
2

1
2
3
.6
8
1
6
9
1
3

- - 2
3
.0
6
3
2
5
0
2
4

3
0
.7
1
8
6
0
3
4
4

3
8
.0
9
3
0
3
2
4

4
7
.3
3
2
3
5
0
8
3

3
8
.1
7
7
5
9
9
2
6

3
9
.8
9
5
3
5
4
1
5

3
8
.1
7
7
5
9
9
2
6

7
9
.5
9
0
4
6
1
0
3

5
6
.0
3
9
5
5
6
7
4

7
6
.6
4
4
9
1
9
7
8

8
0
.3
7
9
5
9
9

8
3
.7
0
9
8
7
2
8
5

- - x
=

1

p
=

2
,
x

=
3
5

l
=

3
4
,
p

=
6

l
=

5
2
,
p

=
8
,
z

=
2
∗

l
=

3
4
,
p

=
6

l
=

3
2
,
p

=
6
,
N

=
4
3
4
7
6
7
6
7
7
∗

l
=

3
4
,
p

=
6

φ
=

2
,
l

=
1
3
0
,
p

=
2
2
,

∆
1

=
5
,
M

=
{1
,2
}
∗

φ
=

2
,
l

=
7
0
,
p

=
1
2
,

∆
1

=
2
,

∆
2

=
0
,
N

=
2
7
·1

0
1
0
,
M

=
{1
}
∗

φ
=

2
,
l

=
1
1
8
,
p

=
2
0
,

∆
1

=
4
,

∆
2

=
0
,
N

=
2
9
6
7
·1

0
1
5
,
M

=
{1
,2
}
∗

φ
=

3
,
l

=
1
3
3
,
p

=
2
2
,

∆
1

=
5
,

∆
2

=
0
,
M

=
{1
,2
}
∗

φ
=

3
,
l

=
1
4
4
,
p

=
2
4
,

∆
1

=
6
,

∆
2

=
1
,
M

=
{}
∗

(6
6
2
4
,5
1
2
9
,1
1
7
)

F
S
b
o
u
n
d

B
C
D

b
o
u
n
d

P
ra
n
g
e

L
ee
-B
ri
ck
el
l

S
te
rn

B
C
D

F
S
-I
S
D

F
S
-I
S
D

(p
a
rt
.
G
.)

B
J
M
M

B
J
M
M

(u
n
if
o
rm

)

B
J
M
M

(b
ru
te

f.
)

(n
o
h
a
sh
m
a
p
s)

- - 3
.1
.4

3
.1
.4
,
3
.3
.1
,
3
.3
.2

3
.4
.2
,
3
.4
.3

3
.5
.1
,
3
.5
.2

3
.6
.1
,
3
.6
.2

3
.6
.1
,
3
.6
.2

3
.7
.1

2
,
3
.7
.2

3
.7
.1

2
,
3
.7
.2

3
.7
.2

3
.7
.1

2
,
3
.7
.2

3
.7
.1

2
,
3
.7
.2

3
.7
.1

2
,
3
.7
.2

2
5
5
.2
6
0
2
1
6
1

2
3
6
.4
9
6
4
2
1
8

2
8
7
.5
3
9
9
2
6
9

2
7
2
.2
7
6
7
4
0
6

2
5
5
.8
6
6
9
2
4
7

2
5
4
.1
5
1
8
8
9
2

2
5
5
.7
3
9
5
0
1
6

2
5
5
.7
6
0
4
4
5

2
4
2
.5
8
6
1
6
5
7

2
3
7
.4
2
0
6
5
3

2
3
6
.0
6
8
0
2
9
5

2
3
5
.3
7
7
8
3
7
7

2
4
4
.3
5
6
5
4
2
8

2
3
8
.3
9
3
9
6
7
1

- - 2
5
.3
8
7
1
9
1
7

3
4
.1
9
7
7
8
8
8
3

7
8
.3
2
3
4
5
8
5
1

8
8
.0
4
7
8
9
0
7
5

7
8
.4
9
3
3
7
6
8
4

7
8
.4
9
3
3
7
6
8
4

9
9
.1
8
1
6
3
1
6
9

1
4
4
.9
3
6
4
2
5
2

1
3
9
.0
3
1
3
5
3
8

1
3
9
.0
3
9
8
4
3
2

8
5
.5
4
3
0
2
2
9
3

1
4
7
.7
4
7
3
1
1
4

- - r
=

7

p
=

2
,
r

=
7

l
=

7
4
,
p

=
1
4

l
=

9
4
,
p

=
1
6
,
z

=
2
∗

l
=

7
5
,
p

=
1
4

l
=

7
5
,
p

=
1
4

φ
=

2
,
l

=
1
4
9
,
p

=
2
4
,

∆
1

=
4
,
M

=
{1
}
∗

φ
=

2
,
l

=
2
5
7
,
p

=
4
2
,

∆
1

=
9
,
M

=
{1
,2
}
∗

φ
=

3
,
l

=
2
5
9
,
p

=
4
0
,

∆
1

=
1
0
,

∆
2

=
1
,

∆
3

=
0
,
N

=
5
·1

0
2
3
,
M

=
{1
,2
}
∗

φ
=

3
,
l

=
2
6
0
,
p

=
4
0
,

∆
1

=
1
0
,

∆
2

=
1
,
M

=
{1
,2
}
∗

φ
=

3
,
l

=
1
4
9
,
p

=
2
0
,

∆
1

=
6
,

∆
2

=
0
,
M

=
{1
,2
}
∗

φ
=

3
,
l

=
2
8
6
,
p

=
4
4
,

∆
1

=
1
2
,

∆
2

=
1
,
M

=
{}
∗

71



5 Conclusion

We discussed several information set decoding algorithms and optimized them with regard
to the runtime complexity. Out of these, two variants of the BJMM algorithm set new
speed records in decoding random linear codes for several parameter sets used in practice.
Future work might include a generalization of the BJMM algorithm to Fq and the devel-
opment of a model for information set decoding algorithms that respects the number of
memory accesses as well.
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Appendices

A Markov Chains

This section is a brief introduction into Markov chains, which are used in appendix B.
Readers familiar with the concept of Markov chains can easily skip this section.
Markov chains can be used to model experiments, where the result of an experiment can
a�ect the outcome of the next experiment with a certain probability.
More formally one de�nes a set of states S := {s1, s2, . . . , st} corresponding to the possible
results of an experiment. A Markov Chain starts in some state si and can move to state sj
with probability pi,j , whenever an experiment is done. The moves are called steps and
the probabilities pi,j are called transition probabilities. To summarize all of the transition
probabilities, we de�ne a transition matrix as follows:

De�nition A.0.2 (Transition Matrix). Denote by pi,j (1 ≤ i, j ≤ t) the transition proba-
bilities of a Markov chain with a set of states S := {s1, s2, . . . , st}. Then the matrix

P :=

p1,1 p1,2 . . . p1,t
...

...
. . .

...
pt,1 pt,2 . . . pt,t


is called the transition matrix P ∈ Rt×t of the Markov chain.

We use a probability vector to de�ne the possible starting states of a Markov chain.

De�nition A.0.3 (Probability Vector). A vector ~u = (u1, . . . , ut)
T ∈ Rt is called a prob-

ability vector, if and only if ui ≥ 0 ∀ i and
t∑
i=1

ui = 1.

So we can use ~u = (u1, . . . , ut)
T ∈ Rt to denote a Markov chain starting in state s1 with

probability u1, in state s2 with probability u2 and so on. Then ~uTP are the probabilities,
with which the Markov chain is in the corresponding states after one step/experiment.
More generally we observe:

Theorem A.0.1. Let P ∈ Rt×t be the transition matrix of a Markov chain and denote by
~u = (u1, . . . , ut)

T ∈ Rt the probability vector representing the starting distribution. Then
the probability vector ~un, ~u

T
n := ~uTPn represents the probability distribution of the Markov

chain after n steps.

Proof. By induction:
n = 1: We start in state si with probability ui and move to state sj with probability pi,j .
Thus we get a probability of ui · pi,j to move to state sj , if we previously were in state si
and after one step of the Markov chain. Iterating over all possible starting states we get
an overall probability of

∑t
i=1 ui · pi,j to be in state sj after one step. This is exactly the

operation ~uTP for column j of the transition matrix P .
n → n + 1: ~uTPn+1 = (~uTPn)P = ~vTP , where ~vT = ~uTPn represents the probability
distribution of the Markov chain after n steps according to theorem A.0.1. The rest of the
reasoning is the same as for n = 1.

This allows us to compute the probability, with which a Markov chain is in a certain state
after n steps.
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B Analysis of Optimization 3.1.3

Optimization 3.1.3 "Force more existing pivots" in section 3.1 describes a technique to opti-
mize the Gaussian elimination process of algorithm 3.1: Instead of permuting the columns
of H uniformly at random in line 13 of algorithm 3.1, we reuse the matrix Ĥ = (Q | id[n−k])
of a previous iteration (i.e. include the comment between lines 3 and 4 of algorithm 3.1)

and swap 1 ≤ x < k(n−k)
n columns from the identity matrix id[n−k] in Ĥ with x random

columns from Q ∈ F(n−k)×k
2 . The resulting matrix is then used as input of the Gaussian

elimination process. Even though this speeds up a single iteration of algorithm 3.1, we
get a dependence between the iterations and cannot use PR[success = true]−1 anymore
to model the average number of iterations. The average number of iterations will even
increase and possibly make the speedup gained during each iteration useless. Therefore
the parameter x needs to be optimized with regard to the concrete algorithm searchALG()
and the average number of iterations. This section shows a way to do so.
First we need to properly de�ne the notion "swap 1 ≤ x < k(n−k)

n columns from the iden-

tity matrix id[n−k] in Ĥ with x random columns from Q ∈ F(n−k)×k
2 ": We uniformly select

x distinct columns from id[n−k] and x distinct columns from Q. Then we swap the �rst
selected column from id[n−k] with the �rst selected column from Q, the second with the
second and so on. It is important to see that once a column from id[n−k] is swapped out,
it cannot be swapped in again. Intuitively this is probably the best and easiest to analyze
method as it introduces exactly x new columns into the former identity matrix16.
To analyse the success probability of an algorithm searchALG(), recall from section 2.2.3
that all information set decoding algorithms guess the entries of the real error vector ~ε
indexed by the information set I or at least assume a certain distribution of these entries
(choosing an information set I is not done by searchALG()). More speci�cally let us as-
sume that implementations of searchALG() succeed with a certain probability, if wt (~εI) is
identical to one or multiple constants de�ned by searchALG(). Note that the entries of ~εI
de�ne exactly those columns of Q that add up to a non-zero syndrome in equation (2.2)
together with the columns of id[n−k] de�ned by ~εI∗ . Therefore we call those columns the
signi�cant columns of Ĥ. Assuming a certain wt (~εI) = b is then identical to assuming
b signi�cant columns within the matrix Q and w − b signi�cant columns within the ma-
trix id[n−k].
So we assume that the number of signi�cant columns within Q de�nes the success proba-
bility of searchALG() (if the order of the columns is important, we can uniformly permute
the columns of Q). This number may change with each iteration/swap operation with a
certain probability. This probability only depends on the number of signi�cant columns
currently found within Q. Hence we can use a Markov chain to model the probability to
have a certain number of signi�cant columns within Q:
We de�ne a set S := {s0, s1, . . . , sw, ssuc} of w + 2 states. The states of the chain are
de�ned as follows:

• si: There are i signi�cant columns within Q, 0 ≤ i ≤ w.

• ssuc: searchALG() returns success = true.

The Markov chain may change its state once per iteration of algorithm 3.1 (corresponding
to the swap operation, which happens once per iteration). Figure B.1 shows the structure
of the transition matrix of this Markov chain.
Note that only the probabilities pi,suc, 0 ≤ i ≤ w depend on the concrete implementation
of searchALG(). The probability pi,suc denotes the chance of algorithm searchALG() to

16This way of doing column swaps is called "Type 3" in [14].
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p0,0 p0,1 . . . p0,w p0,suc

p1,0 p1,1 . . . p1,w p1,suc
...

...
. . .

...
...

pw,0 pw,1 . . . pw,w pw,suc
0 0 0 0 1


Figure B.1: Transition Matrix

succeed, if exactly i signi�cant columns are part of Q (⇔ wt (~εI) = i). Table B.1 provides
an overview of the probabilities pi,suc for the algorithms presented in this thesis.
To compute the remaining probabilities pi,j , 0 ≤ i, j ≤ w let us �rst have a look at the

�gures B.2 and B.3: Starting in state si with a matrix Ĥi as in �gure B.2 swapping
x columns may result in state sj , j = i+ d with a matrix Ĥj as in �gure B.3.

Ĥi = (

k−i insigni�cant,
i signi�cant︷ ︸︸ ︷

Q︸ ︷︷ ︸
k

|

n−k−(w−i) insign.,
w−i signi�cant︷ ︸︸ ︷

id[n−k]︸ ︷︷ ︸
n−k

) ∈ F(n−k)×n
2

Figure B.2: Parity Check Matrix Ĥ in state si before swapping x columns from id[n−k]

with x random columns from Q ∈ F(n−k)×k
2

Ĥj = (

k−(i+d) insigni�cant,
i+d signi�cant︷ ︸︸ ︷

Q′︸ ︷︷ ︸
k

|

n−k−(w−i−d) insign.,
w−(i+d) signi�cant︷ ︸︸ ︷

id′︸ ︷︷ ︸
n−k

) ∈ F(n−k)×n
2

Figure B.3: Parity Check Matrix Ĥ in state sj after swapping x columns from id[n−k] with

x random columns from Q ∈ F(n−k)×k
2

These �gures enable us to see that for d := j − i and 0 ≤ i, j ≤ w the transition probabili-
ties pi,j can be computed as

pi,j = (1− pi,suc)·
(
n− k
x

)−1(k
x

)−1 w−i∑
v=0

(
w − i
v

)(
n− k − w + i

x− v

)(
i

v − d

)(
k − i

x− v + d

)
(B.1)

Thereby we de�ne the binomial coe�cient
(
a
b

)
to be 0 wherever it was previously unde�ned

(b > a, a < 0 or b < 0).
The following remarks should help to understand equation (B.1):

• (1− pi,suc): We only change from state si to state sj , if we did not already succeed
in state si. This factor takes account of that fact.

•
(
n−k
x

)(
k
x

)
: Overall number of column combinations for the swap operation. x columns

from id[n−k] swapped with x columns from Q ∈ F(n−k)×k
2 .

• v: Number of signi�cant columns that we choose from id[n−k] ⇒ v = 0 . . . w − i
(cf. �gure B.2) for the swap operation. Note that we assume n− k −w ≥ x, so that
id[n−k] always has at least x insigni�cant columns.

•
(
w−i
v

)(
n−k−w+i

x−v
)
: We choose v signi�cant columns and x − v insigni�cant columns

from id[n−k] for the swap operation.
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•
(

i
v−d
)(

k−i
x−v+d

)
: We choose v−d out of the i signi�cant columns of Q and the rest from

the insigni�cant columns of Q for the swap operation. So Q′ has i + v − (v − d) =
i+ d = j signi�cant columns as expected.

The overall way to compute the average number of iterations of algorithm 3.1 in combina-
tion with optimization 3.1.3 for a speci�c parameter x can be described as follows:

1. De�ne the probabilities pi,suc, 0 ≤ i ≤ w according to the implementation of
searchALG().

2. Compute the probabilities pi,j using equation (B.1).

3. Assuming a uniform parity check matrix to start with, we can de�ne the probabilities
by which we are in state si at the beginning of the Markov chain as Pr[si] :=(
n
w

)−1(k
i

)(
n−k
w−i
)
(recall that we have i signi�cant columns within Q in state si). Thus

we get a probability vector ~uT = (u0, u1, . . . , uw, usuc)
T with ui := Pr[si], 0 ≤ i ≤ w

and usuc = 0 to start with.

4. Then we can use theorem A.0.1 to compute the number of iterations m, for which
the probability vector ~uTm = (um,0, um,1, . . . , um,w, um,suc)

T = ~uTPm exposes the
entry um,suc ≈ 0.5. This is the average number of iterations that we may expect
when we execute algorithm 3.1 in combination with optimization 3.1.3.
In practice it is not wise to use theorem A.0.1 directly, but one would rather observe
that �gure B.1 describes a so-called absorbing Markov chain and use various theorems
related to that special case.

To �nd the optimal x, we can iterate over all 1 ≤ x < k(n−k)
n and compute the average

number of iterations m for each of them. Using the average number of iterations, we can
then compute the number of bit operations of algorithm 3.1 for each possible x according to
equation (3.1) using time {randomize()[o3.1.1, o3.1.3]} = (n− k) · (br − bopt−3.1.3) (cf. equa-
tion (3.3)) and time {searchALG()} as de�ned by the concrete algorithm. This allows us
to choose the parameter x that results in the fewest binary operations for algorithm 3.1.
Bernstein, Lange and Peters describe this analysis for Stern's algorithm (cf. section 3.4)
in [14, 25]. They also provide an implementation of the analysis of this optimization tech-
nique for Stern's algorithm, which can be found in [24]. Note however that equation (B.1)
is slightly di�erent from the one provided on page 10 of [14].
Our implementation of this optimization technique works for all algorithms discussed in
this thesis (cf. section 4).
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algorithm pi,suc section

Prange =

{
1 for i = 0

0 else
3.2

Lee-Brickell =

{
1 for i = p

0 else
3.3

Stern =


(k/2p/2)

2
(n−k−lw−p )

(kp)(
n−k
w−p)

for i = p

0 else

3.4

Stern
("Birthday Speedpup")

=


(n−k−lw−p )
(n−kw−p)

[
1−

(
1−

( p
p/2

)(
k
p/2

)−2
)N2

]
for i = p

0 else

3.4

Ball-Collision Decoding =


(k/2p/2)

2
(l/2z/2)

2
(n−k−lw−p−z)

(kp)(
n−k
w−p)

for i = p

0 else

3.5

FS-ISD =


((k+l)/2p/2 )((k−l)/2j )( l

(p/2)−j)(
n−k−l
w−p )

(ki)(
n−k
w−i)

for i = j + p
2

(0 ≤ j ≤ p
2)

0 else

3.6

BJMM =

{
(Ps)4 · c(3) for i = p

0 else
3.7

Table B.1: Probabilites pi,suc for several algorithms. Recall that pi,suc is a conditional
probability (if we are in state i, we already have an error vector ~ε with wt (~εI) = i).

Remark B.0.8 (pi,suc of FS-ISD). If we have wt (~εI) = i = j + p/2, 0 ≤ j ≤ p/2 in

state si, there exist exactly
(
k
i

)(
n−k
w−i
)
combinations for such an error vector ~ε. To succeed

with the FS-ISD algorithm, we need a distribution of the error vector as in �gure 3.7: We
always need p/2 1's in the upper (k + l)/2 bits. j more 1's may be distributed among the
following (k − l)/2 bits resulting in exactly i = (p/2) + j 1's in the �rst k bits (as we are
in state si). However according to �gure 3.7 we also need an overall weight of p/2 on the
second block of size (k+ l)/2, so that we need exactly (p/2)− j 1's in the l-block. The last
factor of the equation in table B.1 is self-explanatory.

Remark B.0.9 (pi,suc of BJMM). As described in section 3.7 the BJMM algorithm involves
a partial gaussian elimination (exactly l less columns) rather than a complete gaussian
elimination. Therefore the entire model presented in this section needs to be adapted to

work with a matrix Q′ ∈ F(n−k)×(k+l)
2 instead of Q ∈ F(n−k)×k

2 and the matrix S :=
(0[(n−k−l)×l] | id[n−k−l])T instead of id[n−k]. To de�ne the notion of signi�cant columns
we can use equation (3.30) rather than equation (2.2).
The formula for the probabilities pi,suc of the BJMM algorithm mentioned in table B.1 only
holds in that model, whereas the others use the model described in this section. However in
the case of FS-ISD it would make sense to use the adapted model as well.
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C searchFS() using �ndColl()

The following algorithm is an example on how to apply the function �ndColl() (algo-
rithm 3.8) from section 3.7 in the context of the FS-ISD algorithm. The original searchFS()
function is de�ned as algorithm 3.7 in section 3.6.

Algorithm C.1: searchFS() using �ndColl()

Input: parity check matrix Ĥ = (Q | L | S) ∈ F(n−k)×n
2 , syndrome ~ς ∈ Fn−k2 ,

w = wt (~e), algorithmic parameter 0 ≤ p ≤ w, algorithmic parameter
0 ≤ l ≤ n− k − w + p

Output: success indicator (true/false), error vector ~ε ∈ Fn2
/* create base lists */

L1 := {~l1 = prepend (~εI1 ,~0), ~εI1 ∈ Fd(k+l)/2e
2 ,~0 ∈ Fb(k+l)/2c

2 | wt(~εI1) = p
2}1

L2 := {~l2 = prepend (~0,~εI2), ~εI2 ∈ Fb(k+l)/2c
2 ,~0 ∈ Fd(k+l)/2e

2 | wt(~εI2) = p
2}2

/* �nd collisions */
L ← findColl (L1,L2, Q

′, ~ς[l], l, p)3

/* use collisions */
foreach ~εI ∈ L do4

S~εI∗ := ~ς +Q′~εI5

if wt(S~εI∗) = w − p then6

~εI∗ ← remove(S~εI∗ , l)7

~ε← prepend(~εI ,~εI∗)8

return (true,~ε)9

end10

end11

return (false,~0)12

Thereby the list L1 contains all possible vectors ~εI1 as de�ned in section 3.6, just with
zeroes appended, whereas the list L2 contains the vectors ~εI2 from section 3.6 with zeroes
prepended. The padding with zeroes is necessary as we do not use ~εI = prepend(~εI1 ,~εI2)
anymore, but more generally write ~εI as a sum of two vectors within algorithm 3.8.
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D List Experiments

Remark 3.5.2 and 3.6.2 explain the problem that the lists used in the context of the Ball-
Collision Decoding (section 3.5) and the FS-ISD algorithm (section 3.6) are not entirely
uniform lists, but yet we assume the number of collisions between those lists to behave
as if they were. As proven in remark 3.5.2 this is reasonable with regard to the expected
number of collisions. However we were unsure with regard to the variance of the number
of collisions. Therefore we performed the following two experiments:

BCD lists: We �rst sampled
(k/2
p/2

)
elements with length l uniformly at random (arbitrary

weight) for two lists L1 and L2. This is meant to be equivalent to the "choices"
of ~ς[l] + (Q1~εI1)[l] and (Q2~εI2)[l] in line 4 and 10 of algorithm 3.6. Then we iterated

over all
( l/2
z/2

)
possibilities of length l/2 elements with weight z/2 and added each of

those possibilities to the upper half of each entry of L1 and the lower half of each
entry of L2, i.e. each of the former

(k/2
p/2

)
many list elements was expanded by a factor

of
( l/2
z/2

)
. So basically we simulated the

( l/2
z/2

)
many additions of ~ε1 and ~ε2 in line 4

and 10 of algorithm 3.6. Afterwards we counted the number of collisions between the
two lists.

FS-ISD lists: To simulate the lists L1 and L2 occurring during the execution of the
FS-ISD algorithm (cf. algorithm 3.7) we sampled

((k+l)/2
p/2

)
elements with length l

uniformly at random (arbitrary weight) for list L1. The creation of list L2 is slightly

more complicated: We needed to generate all
((k+l)/2

p/2

)
combinations of vectors with

weight p/2 and length (k + l)/2, i.e. iterate over all ~εI2 as in line 2 of algorithm 3.7.
For each combination where the �rst (k − l)/2 bits were di�erent, we sampled a
uniform element ~a ∈r Fl2; for the combinations where the �rst bits were the same,
the same sample ~a was used. Note that the �rst (k − l)/2 bits correspond to the

vector ~γ ∈ F(k−l)/2
2 in equation (3.34) and the sample ~a is meant to correspond to the

result of the computation (Q′′2~γ)[l]. Then we were able to simulate the entries of L2

as ~a+ (~εI∗)[l]. Recall that the vector (~εI∗)[l] consists of the last l bits of ~εI2 . Finally
we could count the number of collisions between the two lists.

Repeating these processes allowed us to compare the expected number of collisions and the
variance of this number determined in the experiments with our theoretical ideas (entirely
uniform lists).
Note that the variance of the number of collisions between entries of length l of two uniform
lists L1 and L2 with |L1| = |L2| =: N can be de�ned as

σ2 :=

N2∑
X=0

(X − µ)2 ·BN2,2−l(X)

= N2 · 2−l(1− 2−l) (D.1)

Thereby we use the random variable X to denote the number of collisions, µ := E[X] =
N2 · 2−l as the expected number of collisions and Ba,b(x) :=

(
a
x

)
· (1− b)a−x · bx as the

binomial distribution function. The formula can be veri�ed by observing the fact that
Pr[X = c] = BN2,2−l(c) for every possible number of collisions 0 ≤ c ≤ N2. It is well
known that the variance of a binomial distribution can be simpli�ed as in equation (D.1).
In contrast we compute the variance observed in the experiments as

σ2
exp :=

1

v
·

v∑
i=1

(x(i)− µexp)2
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In this context v denotes the number of experiments performed and x(i) is the number
of collisions seen in experiment i. µexp is the average number of collisions seen in the
experiments.
The implementation of the experiments in C++ in combination with NTL and GMP
[33, 34] was part of the work for this thesis.
The results of our experiments for v = 1000 are displayed in table D.1: The experimentally
determined average number of collisions µexp behaves as anticipated in theory (cf. µ).
The variance σ2

exp is sometimes smaller or larger than the corresponding theoretical result
though (cf. σ2). However the di�erence is rather small.
All in all we may conclude that it seems reasonable to model the number of collisions
between the list elements occurring in the Ball-Collision Decoding (BCD) and the FS-ISD
algorithm as the number of collisions occurring between uniform lists. Nevertheless the
non-uniformity of the real lists should be kept in mind.

algorithm k l p z µexp µ σ2
exp σ2

BCD 100 10 2 2 61 61 60 60

BCD 100 10 4 2 36631 36636 34708 36600

BCD 100 28 4 2 1 1 1 1

BCD 100 38 4 2 0 0 0 0

BCD 50 10 4 2 2195 2197 1905 2195

BCD 50 16 6 2 5164 5166 5359 5165

BCD 524 10 2 2 1676 1675 1724 1674

BCD 524 10 4 2 28540455 28540636 28740334 28512765

FS-ISD 100 10 2 - 2 2 3 2

FS-ISD 100 10 4 - 2151 2153 2096 2151

FS-ISD 200 20 4 - 33 34 33 34

FS-ISD 50 10 4 - 185 184 176 184

FS-ISD 50 12 6 - 4929 4932 4975 4931

FS-ISD 524 10 2 - 69 69 71 69

Table D.1: Results of the list experiments.
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E BJMM with an arbitrary number of layers

This section shortly describes the formulas required to model the runtime, memory con-
sumption and success probability of the BJMM algorithm (cf. section 3.7) for an arbitrary
number of layers. We use φ to denote the number of layers above layer 0 (cf. �gure 3.9),
i.e. φ+ 1 is the overall number of layers.
We also take the following possibilities into account: The 2φ base lists on layer φ of size |B|
can be generated

1. in a brute-force approach.

2. in a meet-in-the-middle approach.

3. by uniform sampling.

The �rst and third method are described in optimization 3.7.3; the second method is the
one originally found in [21] (also cf. section 3.7).
Let us �rst de�ne the variables pj and rj for an arbitrary number of layers (p0 := p, r0 = l):

pj :=
pj−1

2
+ ∆j (1 ≤ j ≤ φ− 1)

rj :≈ log2(Rj) (1 ≤ j ≤ φ− 1)

Rj :=

(
pj−1

pj−1/2

)(
k + l − pj−1

∆j

)
(1 ≤ j ≤ φ)

For the base lists (j = φ) we have rφ := 0 and the elements have a weight of

pφ :=

{
pφ−1

2 + ∆φ (uniform sampling)
pφ−1

2 (brute force, meet-in-the-middle)

Other important equations that need to be generalized include the probability Ps (cf. equa-
tion (3.41))

Ps :=


1 (brute force)(

(k+l)/2
pφ

)2( k+l
pφ−1

)−1
(meet-in-the-middle)

PN := 1−
(

1−Rφ
(
k+l
pφ

)−2
)N2

(uniform sampling)

as well as the base list sizes

|B| :=


(
k+l
pφ

)
(brute force)(

(k+l)/2
pφ

)
(meet-in-the-middle)

N (uniform sampling)

Equation (3.47) can still be used to describe the list sizes on layer j, if the function f(j)
is more generally de�ned as f(j) := 2|φ−1−j|.
All in all we get

time {searchBJMM()} =

φ−1∑
j=0

2j · time
{
findColl(|L(j+1)|)

}+ t16 (E.1)

mem {searchBJMM()} = M(φ) +O
(

max
j=0,...,φ−1

{
|L(j+1)| · (rj − rj+1 + k + l)

})
(E.2)

PRBJMM [success = true] =

(
k+l
p

)(
n−k−l
w−p

)(
n
w

) · (Ps)f(0) · c(φ) (E.3)
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The factor 2j in equation (E.1) comes from the fact that we have 2j lists on layer j and thus
need to call the function �ndColl() 2j many times with lists of the layer above (size |L(j+1)|)
as input. t16 models the time spent with computations on layer 0 (line 16 of algorithm 3.9,
cf. lemma 3.7.1); M(φ) is de�ned in equation (3.51), c(φ) in equation (3.52). The rest
should be self-explanatory in the context of the explanations from section 3.7.
Note that the FS-ISD algorithm with a partial gaussian elimination (contrary to section 3.6)
is the special case φ = 1 of the generalized BJMM algorithm; the runtime formula of FS-
ISD (cf. equation (3.35)) is just slightly better than equation (E.1) for φ = 1, because for
FS-ISD the complexity of the binary addition in line 4 of algorithm 3.8 can be ignored as it
is just a simple prepend-operation. Equation (E.2) for φ = 1 is worse than equation (3.36)
as well, partially because the original FS-ISD algorithm does not need to store the list L
on layer 0. Anyway equation (E.2) is more of an upper bound for the overall memory
consumption of the BJMM algorithm.
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